• Title/Summary/Keyword: Ground deformation

Search Result 789, Processing Time 0.037 seconds

Study on The Estimation of Pipeline.Soil Interaction Force during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관.지반 상호작용력의 산정에 관한 연구)

  • 김태욱;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.114-122
    • /
    • 2002
  • The ASCE formula of lifeline.soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline-soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved and the limitation of the ASCE formula and semi-analytical relationship are discussed. Also, relative influences of various parameters are evaluated for the clarification of behavior of pipeline subjected to longitudinal permanent ground deformation due to liquefaction.

  • PDF

The contiguity ground and structures sinkage analysis of in city excavation (도심지 굴착공사에 따른 인접지반 및 구조물 침하원인 분석)

  • Seong, Joo-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1301-1306
    • /
    • 2009
  • Recently, urban excavations are one of most frequent geotechnical work according to construction of a high rise building and subway. These kind of excavation affect to a adjacent ground or structure and it can trigger various severe accidents. Generally, the ground is closer to the excavation site, the deformation become larger. In this study, special ground settlement case due to adjacent ground excavation is presented and a cause of deformation is examined by various geotechnical exploration, lab-testing and numerical analysis.

  • PDF

Seismic Retrofit of High-Rise Building with Deformation-Dependent Oil Dampers against Long-Period Ground Motions

  • Aono, Hideshi;Hosozawa, Osamu;Shinozaki, Yozo;Kimura, Yuichi
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.177-186
    • /
    • 2016
  • Along the subduction-zone of the western Japanese islands, large earthquakes are expected occur around the middle of this century, and long-period ground motions will reach major urban areas, shaking high-rise buildings violently. Since some old high-rise buildings were designed without considering long-period ground motions, reinforcing such buildings is an important issue. An effective method to reinforce existing high-rise buildings is installing additional dampers. However, a problem with ordinary dampers is that they require reinforcement of surrounding columns and girders to support large reaction forces generated during earthquake ground motion. To solve this problem, a deformation-dependent oil damper was developed. The most attractive feature of this damper is to reduce the damping force at the moment when the frame deformation comes close to its maximum value. Due to this feature, the reinforcement of columns, girders, and foundations are no longer required. The authors applied seismic retrofitting with a deformation-dependent oil damper to an existing 54-story office building (Shinjuku Center Building) located in Shinjuku ward, Tokyo, in 2009 to suppress vibration under the long period earthquake ground motions. The seismic responses were observed in the 2011 Tohoku Earthquake, and it is clarified that the damping ratio was higher and the response lower by 20% as compared to the building without dampers.

Case Study of Construction Management in Damage due to Soil Particle Migration Using Inclinometer Incremental Deflection (경사계를 이용한 토립자 유출 관련 피해 시공 관리 사례 연구)

  • Kim, Sung-Wook;Han, Byung-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.268-275
    • /
    • 2006
  • Excavation works of cylindrical shafts and tunnels for the construction of a variety of infrastructures have been frequently going on in the urban areas. When ground excavations of cylindrical shafts and shallow tunnels proceed in the ground condition of high water level and silt particle component, ground water drawdown involving soil particle migration causes loosening of ground around tunnels and shafts, causes settlement and deformation of ground. Damages due to ground sinking and differential settlement can occur in the adjacent ground and structures. The extent and possibility of damage relevant to ground water drawdown and soil particle migration can't be so precisely expected in advance that we will face terrible damages in case of minor carefulness. This paper introduces two examples of construction management where using incremental deformation graph of inclinometer, we noticed the possibility of soil migration due to ground water drawdown in the excavation process of vertical shaft and shallow tunnel, analysed a series of measurement data in coupled connection, properly prepared countermeasures, so came into safe and successful completion of excavation work without terrible damages. The effort of this article aims to improve and develop the technique of design and construction in the coming projects having similar ground condition and supporting method.

  • PDF

Impact of target spectra variance of selected ground motions on seismic response of structures

  • Xu, Liuyun;Zhou, Zhiguang
    • Earthquakes and Structures
    • /
    • v.23 no.2
    • /
    • pp.115-128
    • /
    • 2022
  • One common method to select input ground motions to predict dynamic behavior of structures subjected to seismic excitation requires spectral acceleration (Sa) match target mean response spectrum. However, dispersion of ground motions, which explicitly affects the structural response, is rarely discussed in this method. Generally, selecting ground motions matching target mean and variance has been utilized as an appropriate method to predict reliable seismic response. The goal of this paper is to investigate the impact of target spectra variance of ground motions on structural seismic response. Two sets of ground motions with different target variances (zero variance and minimum variance larger than inherent variance of the target spectrum) are selected as input to two different structures. Structural responses at different heights are compared, in terms of peak, mean and dispersion. Results show that increase of target spectra variance tends to increase peak floor acceleration, peak deformation and dispersions of response of interest remarkably. To short-period structures, dispersion increase ratios of seismic response are close to that of Sa of input ground motions at the first period. To long-period structures, dispersions of floor acceleration and floor response spectra increase more significantly at the bottom, while dispersion increase ratios of IDR and deformation are close to that of Sa of input ground motions at the first period. This study could further provide useful information on selecting appropriate ground motion to predict seismic behavior of different types of structures.

Investigation and Analysis of Ground Deformation at a Coal Waste Depot in Dogye (도계 석탄폐석 적치장 주변지반의 지형변화 조사 및 분석)

  • Cho, Yong-Chan;Song, Young-Suk;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.21 no.3
    • /
    • pp.199-212
    • /
    • 2011
  • To investigate the causes of ground deformation around the Dogye coal waste depot in Samcheok city, Gangwon Province, we undertook a field survey and performed boring tests and a topographic analysis using maps compiled in various years. The results of boring tests and analyses of ground fractures indicate that the thickness of the soil layer ranges from 9 to 28.5 m and that ground deformation has occurred to the $240{\sim}250^{\circ}$ direction. The topographic analysis revealed that the topography of the site has changed continuously due to the dumping of coal waste. The causes of ground deformation, investigated by both field surveys and the topographic analysis, were the thick layer of soil at this site, the loading weight of coal waste, and the excavation at the lower part of the slope.

A study on reduction effects of the ground loss in pre-loading (선행하중 재하시 지반손실 감소효과에 관한 연구)

  • Kim, Bong-Yoo;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.224-231
    • /
    • 2005
  • The ground excavation causes the deformation of the ground where the neighborhood structure is located. The ground deformation result in the vertical settlement of the neighborhood structure as well as the horizontal displacement of the temporary earth retaining structures. The decreased volume of the soil due to the ground settlement is defined as 'the ground loss quantity' or 'the ground loss'. When excavation is performed nearby existing structures, retaining walls should be designed and constructed to minimize the ground loss. Among various methods for reducing the ground loss, this study introduces the pre-loading method which has been recently developed. The reduction effect of the ground loss by pre-loading has been found to be larger as using a wall with relatively smaller rigidity.

  • PDF

A study on the liquefaction analysis using the large deformation theory (대변형 이론을 이용한 액상화 해석에 관한 연구)

  • Moon, Yong;Lee, Kang-Il;Kim, Tae-Hoon;Im, Eun-Sang;Lee, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1348-1357
    • /
    • 2006
  • For the rational aseismatic design of a structure constructed on the ground which has weakness for liquefaction or flow, it is necessary to predict ground deformation as well as force acting on the ground. In general, the prediction of liquefaction is based on solid mechanics while the prediction of flow is basis of fluid mechanics. Since liquefaction and flow occur continuously, unified analysis methods have been developed. Among of them is Rue-elasto plastic model that is based on small deformation theory. This methods, however, is not adequate for such a large deformable ground condition. In this paper, a large deformaion theory using the finite deformation theory proposed by Dietal and the updated lagrangian method is presented. In addition, the applicability of the theory is verified by 1-d consolidation analysis and flow tests.

  • PDF

Evaluation on the Performance of Deep Excavation by Using PIV Technique

  • Abbas, Qaisar;Song, Ju-sang;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.191-210
    • /
    • 2017
  • The concern study, present the results of experimental study on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to check the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments are performed by considering the wall stiffness, ground water table effect and ground relative density. The results are presented in form of contour and vector plots and further based on PIV analysis wall and ground displacement profile are drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation as the degree of accuracy in PIV analysis and measured results with LVDT are within 1%. Further the vector and contours plot effectively demonstrate the ground behavior under different conditions and the PIV analysis results fully support the measured results.

Effect of Ground Water Table on Deep Excavation Performance (지반 굴착시 지하수위가 벽체에 미치는 영향 분석)

  • Song, Ju-Sang;ABBAS, QAISAR;Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.33-46
    • /
    • 2018
  • This study presents the experimental results on the performance of deep excavation by using image processing technique particle image velocimetry (PIV). The purpose of present study is to be checked the application of PIV for the successive ground deformation during deep excavation. To meet the objectives of concern study, a series of reduce scale model test box experiments were performed by considering the wall stiffness, ground water table effect and ground relative density. The results were presented in form of contours and vector plot and further based on PIV analysis wall and ground displacement profile were drawn. The results of present study, indicate that, the PIV technique is useful to demonstrate the ground deformation zone during the successive ground excavation.