• 제목/요약/키워드: Ground control software

검색결과 136건 처리시간 0.038초

과학기술위성2호 관제를 위한 Ground station Baseband Controller(GBC) 개발 (Ground station Baseband Controller(GBC) Development of STSAT-2)

  • 오대수;오승한;박홍영;김경희;차원호;임철우;유창완;황동환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.116-118
    • /
    • 2005
  • STSAT-2 is first satellite which is scheduled to launch by first Korea launcher. After launch Ground station Baseband Controller(GBC) for operating STSAT-2 is now developing. GBC control data flow path between satellite operation computers and ground station antennas. and GBC count number of received data packets among demodulated audio signals from three antennas and set data flow path to good-receiving antenna automatically. In GBC two uplink FSK modulators(1.2kbps, 9.6kbps) and six downlink FSK demodulators(9.6kbps, 38.4kbps) are embedded. STSAT-2 GBC hardware is more simpler than STSAT-1 GBC by using FPGA in which all digital logic implemented. Now test and debugging of GBC hardware and Software(FPGA Code and GBC Manager Program) is well progressing in SaTReC, KAIST. This paper introduce GBC structure, functions and test results.

  • PDF

STANAG 4586을 적용한 소형드론시스템의 상호운용성 설계 및 검증 (Interoperability Design and Verification of Small Drone System Applying STANAG 4586)

  • 이종훈;박태산;성길영;남경래;문정호
    • 항공우주시스템공학회지
    • /
    • 제16권6호
    • /
    • pp.74-80
    • /
    • 2022
  • 소형 드론은 활용분야가 다양해지고 있으며 특히 군에서는 전장에서 정찰 및 특수목적 용도로 활용 가능한 드론 체계가 요구되고 있다. 본 연구에서는 군용 무인기의 표준 인터페이스인 STANAG 4586을 멀티콥터 형태의 소형 드론에 적용하여 군용 체계 적합성을 검토하고자 하였다. 이를 위해 소형 멀티콥터 비행체, 통합비행제어컴퓨터, 지상통제장치, 데이터링크를 설계/제작하고, STANAG 4586 인터페이스를 적용한 비행제어 소프트웨어와 지상통제장비 소프트웨어를 개발하여 HILS 시험과 비행시험을 수행하였다.

저궤도위성 원격측정 데이터 다운링크 관리 (Telemetry Data Downlink Management of Low Earth Orbit Satellite)

  • 채동석;양승은;천이진
    • 한국위성정보통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.111-116
    • /
    • 2013
  • 저궤도 위성은 지상과 교신할 수 있는 시간이 매우 제한되어 있으므로 위성에서 생성되는 모든 원격측정 데이터는 위성의 대용량 메모리에 저장되고 지상과 교신할 수 있는 시간에 지상으로 전송된다. 원격측정 데이터 전송은 실시간 데이터 프레임 및 대용량 메모리에 저장된 데이터 프레임을 지상으로 전송하는 것으로 실시간 데이터만을 전송하는 실시간 전송모드가 있고, 실시간 및 대용량 메모리에 저장되어 있는 플레이백 데이터를 포함한 플레이백 모드가 있다. 그리고 데이터 전송속도에 따라서 저속 전송모드와 고속 전송모드로 구분할 수 있다. 본 논문은 저궤도위성 원격측정 데이터 지상전송 관리 방식에 대한 것으로 한국항공우주연구원에서 개발된 저궤도위성의 다운링크 인터페이스 및 탑재소프트웨어의 구조에 대해서 간략히 소개하고, 위성에서 생성되는 원격측정 데이터 저장방식, 실시간 및 플레이백 데이터 지상 전송방식, 다운링크 채널 및 전송속도 제어방식 등에 대해서 기술한다.

Design of Antenna Tracking Software for MSC(Multi-Spectral Camera) Antenna Control

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Paik, Hong-Yul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.235-240
    • /
    • 2002
  • This paper shows the desist concept of an ATS(Antenna Tracking Software) to control the movement of the MSC(Multi-Spectral Camera) antenna. The MSC has a two-axes directional X-band antenna for image transmission to KGS(KOMSAT2 Ground Station). The main objective of the ATS is to drive the APM(Antenna Pointing Mechanism) to the required elevation and the azimuth position according to an appropriate TPF(Tracking Parameter File). The ATS is implemented as one task of the SBC(Single Board Computer) software, which uses VxWorks as a real time OS. The ATS has several operational modes such as STANDBY mode, First EL mode, First AZ mode, Normal Operation mode, and so on. The ATS uses two PI controllers fur the velocity and the position loop respectively, to satisfy the requirements specification. In order to show the feasibility of the described design concept, the various simulations and the experiments are performed under specific test configuration.

  • PDF

An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

  • Woo, Jin;Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • 제27권3호
    • /
    • pp.195-204
    • /
    • 2010
  • The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.

Development of Ground Monitoring and Control System for Korea Augmentation Satellite System

  • Daehee Won;Chulhee Choi;Eunsung Lee;Hantae Cho;Dongik Jang;Eunok Jang;Heetaek Lim;Ho Sung Lee;Jungja Kim;Joohap Choi
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권2호
    • /
    • pp.185-200
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) is the first satellite navigation enhancement system in Korea developed in compliance with international standards. Technologies accumulated during the development process should be spread to industries such as academia and serve as the basis for developing the domestic satellite navigation field. This paper introduces the development process from design to implementation, testing, and verification of KASS control systems (KCS). First, development standards, milestones, requirements, and interface standards are presented as KCS development methods, and major functional design, physical design, and hardware/software implementation are described based on the allocated requirements. Subsequently, the verification environment, procedures, and results of the development product are covered and the developed operational and maintenance procedures are described. In addition, based on the experience gained through the development, suggestions were made for beneficial technology development and organization when promoting satellite navigation projects in the future. Since this work has important historical value for the development of domestic satellite navigation, it is expected that the development results will be shared with academia and industry in the future and be used as basic data for similar development.

상용 기성품에 기반한 스마트무인기 탑재자료저장장치 (COTS Based Air Data Recording System for SmartUAV)

  • 장성호;김영민
    • 항공우주기술
    • /
    • 제9권2호
    • /
    • pp.153-160
    • /
    • 2010
  • ADRS는 프로그램 가능한 자동화 컨트롤러로써 스마트무인기를 위해 설계된 저비용의 재구성 가능한 비행시험 데이터 수집 시스템이다. 본 논문에서는 하드웨어와 소프트웨어 설계내용을 기술하였다. ADRS와 DFCC 인터페이스, ADRS와 센서 인터페이스에 대한 하드웨어 구성과 수정사항을 기술하였으며 ADRS 운용 소프트웨어와 데이터 저장에 대한 절차가 설명되었다. 마지막으로 스마트무인기의 지상시험과정을 통한 ADRS의 검증과정 및 결과가 제시되었다.

리눅스 기반 무인항공기 제어 애플리케이션 개발 (Development of Flight Control Application for Unmanned Aerial Vehicle Employing Linux OS)

  • 김명현;문승빈;홍성경
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.78-84
    • /
    • 2006
  • This paper describes UAV (Unmanned Aerial Vehicle) control system which employs PC104 modules. It is controlled by application program based on Linux OS. This application consists of both Linux device driver in kernel-space and user application in user-space. In order to get data required in the unmanned flight, external devices are connected to PC104 modules. We explain how Linux device drivers deal with data transmitted by external devices and we account for how the user application controls UAV on the basis of data processed in the device driver as well. Furthermore we look into the role of GCS (Ground Control Station) which is to monitor the state of UAV.

Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.155-171
    • /
    • 2019
  • In this study, Semi-active Tuned Mass Dampers (STMDs) are employed in order to cover the prevailing uncertainties and promote the efficiency of the Tuned Mass Dampers (TMDs) to mitigate undesirable structural vibrations. The damping ratio is determined using type-1 and type-2 Fuzzy Logic Controllers (T1 and T2 FLC) based on the response of the structure. In order to increase the efficiency of the FLC, the output membership functions are optimized using genetic algorithm. The results show that the proposed FLC can reduce the sensitivity of STMD to excitation records. The obtained results indicate the best operation for T1 FLC among the other control systems when the uncertainties are neglected. According to the irrefutable uncertainties, three supplies for these uncertainties such as time delay, sensors measurement noises and the differences between real and software model, are investigated. Considering these uncertainties, the efficiencies of T1 FLC, ground-hook velocity-based, displacement-based and TMD reduce significantly. The reduction rates for these algorithms are 12.66%, 26.43%, 20.98% and 21.77%, respectively. However, due to nonlinear behavior and considering a range of uncertainties in membership functions, T2 FLC with 7.2% reduction has robust performance against uncertainties compared to other controlling systems. Therefore, it can be used in actual applications more confidently.

GPS 유도 폭탄용 유도조종모듈 개발 (Development of Guidance Control Module for GPS Guided Bomb)

  • 임흥식;윤형식
    • 한국군사과학기술학회지
    • /
    • 제14권5호
    • /
    • pp.774-780
    • /
    • 2011
  • The guidance control module is needed for control of a GPS guided bombs to improve the accuracy and availability of a conventional bomb. In this paper, we present the development of hardware design, software design and test environments of it. And we also show the process of the tests and the results verifying and proving for its required functions and performances through ground tests and flight tests.