• Title/Summary/Keyword: Ground control point

Search Result 319, Processing Time 0.025 seconds

A SiGe HBT Variable Gain Driver Amplifier for 5-GHz Applications

  • Chae Kyu-Sung;Kim Chang-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.356-359
    • /
    • 2006
  • A monolithic SiGe HBT variable gain driver amplifier(VGDA) with high dB-linear gain control and high linearity has been developed as a driver amplifier with ground-shielded microstrip lines for 5-GHz transmitters. The VGDA consists of three blocks such as the cascode gain-control stage, fixed-gain output stage, and voltage control block. The circuit elements were optimized by using the Agilent Technologies' ADSs. The VGDA was implemented in STMicroelectronics' 0.35${\mu}m$ Si-BiCMOS process. The VGDA exhibits a dynamic gain control range of 34 dB with the control voltage range from 0 to 2.3 V in 5.15-5.35 GHz band. At 5.15 GHz, maximum gain and attenuation are 10.5 dB and -23.6 dB, respectively. The amplifier also produces a 1-dB gain-compression output power of -3 dBm and output third-order intercept point of 7.5 dBm. Input/output voltage standing wave ratios of the VGDA keep low and constant despite change in the gain-control voltage.

Analysis of Response Spectrum of Ground Motions from Mine Blasting (발파에 의한 지반진동의 응답스펙트럼 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.338-343
    • /
    • 2005
  • This study analysed response spectrum using the observed ground motion from the mine blasting and, then compared the results to the seismic design response spectra applied domestic nuclear power plants. The results showed that the resultant response spectra above 20 Hz revealed higher values than the design response spectra and those below 20 Hz revealed much lower values. These facts suggest that the analysis of response spectrum should be applied to the analysis of impacts to frequency dependent structures in addition to the analysis of peak values of ground motions.

Changes of the Kinetic Energy of Putter Head and Ball Movements during the Process of Impact (퍼팅 스트로크의 충돌과정에서 나타난 퍼터헤드와 볼의 운동에너지 변화 분석)

  • Park, Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • The purpose of this study was to analyze the kinetic energy of putter head and ball movements during the process of impact. Highly skilled 5 golfers(less than 1 handicap) participated in this study and the target distance was 3 m. Movements of ball and putter head were recorded with 2 VHS video cameras(60 Hz, 1/500 s shutter speed). Small control object($18.5{\times}18.5{\times}78.5\;cm$) was used in this sdtuldy. Analyzing the process of impact, putter was digitized before 0.0835 s and after 0.0835 s of impact. Ball was digitized 0.1336 s after impact. The results showed that the maximum speed was appeared at Impact and prolonged for a while. Contact point of the club head was within 0.7 cm to the z axis. After contacting the club head, the ball was moved above the ground level(slide) and returned to the ground with sliding and rolling. After contacting the ground, the speed of ball was relied on the surface of the ground. During impact, 70% of kinetic energy of club head has been transferred to the ball.

Analysis of ATS Verification Results for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.448-451
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is an electro-optical camera system which is being developed to be installed on KOMPSAT-2 satellite. High resolution image data from MSC system will be transmitted to the ground-station through x-band antenna called APS (Antenna Pointing System). APS is a directional antenna which will point to the receiving antenna at ground station while the satellite is passing over it. The APS needs to be controlled accurately to provide the reliable communication with big RF link margin. The APS is controlled by ATS (Antenna Tracking Software) which is included in the MSC software. ATS uses the closed loop control algorithm which will use TPF (Tracking Parameter File) as an input for antenna position, and will use two resolve readings from APS as a feedback. ATS has been developed and verified using APS QM (Qualification Model) and all the control parameters for ATS have been tested and verified. Various kinds of maximum, nominal and realistic dynamics for the APS movement have been simulated and verified. In this paper, closed loop servo control algorithm and obtained APS position error from the verification test with APS QM will be presented in detail

  • PDF

Coordinates Determination of tow Level Control Point by Aerial Triangulation (사진기준점측량을 이용한 저등급 기준점의 좌표결정)

  • 최재화;이석배;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.6 no.2
    • /
    • pp.34-41
    • /
    • 1988
  • Nowadays the considerable improvements, not only in photogrammetric equipment but also in adjustment methods have led to a high accuracy of Aerial Triangulation and reach the step to obtain A.T. technique that uses Global Position System without ground control survery. The enterance of analytical plotter have made considerable development both in accuracy and in efficiency and improved working environment of A.T. by the combination of On-Line Analytical Plotting System. In this paper, in A.T., with using of analytical polotter, aims to improve the acccuracy in coordinates determination of low level control point. The result shows that in case of A.T. with analytical plotter AVIOLYT BC2, the accuracy of control points improves to 7% in planimetry and to 40% in height compared to A.T. with precision plotter Autograph A-8.

  • PDF

Design of Deep Learning-Based Automatic Drone Landing Technique Using Google Maps API (구글 맵 API를 이용한 딥러닝 기반의 드론 자동 착륙 기법 설계)

  • Lee, Ji-Eun;Mun, Hyung-Jin
    • Journal of Industrial Convergence
    • /
    • v.18 no.1
    • /
    • pp.79-85
    • /
    • 2020
  • Recently, the RPAS(Remote Piloted Aircraft System), by remote control and autonomous navigation, has been increasing in interest and utilization in various industries and public organizations along with delivery drones, fire drones, ambulances, agricultural drones, and others. The problems of the stability of unmanned drones, which can be self-controlled, are also the biggest challenge to be solved along the development of the drone industry. drones should be able to fly in the specified path the autonomous flight control system sets, and perform automatically an accurate landing at the destination. This study proposes a technique to check arrival by landing point images and control landing at the correct point, compensating for errors in location data of the drone sensors and GPS. Receiving from the Google Map API and learning from the destination video, taking images of the landing point with a drone equipped with a NAVIO2 and Raspberry Pi, camera, sending them to the server, adjusting the location of the drone in line with threshold, Drones can automatically land at the landing point.

Accuracy of Combined Block Adjustment with GPS-Permanentstation (GPS 연속관측점을 이용한 결합블럭조정의 정확도)

  • 박운용;이재원;신상철
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.21-32
    • /
    • 1999
  • Mapping and precise point determination by photogrammetry have been shown to be an economic solution. But control points are necessary to determine the exterior orientation parameters. Although the number of required control points has been reduced based on extended bundle adjustment and reinforced cross-strip, the ground survey is a significant factor of whole expenses in photogrammetry. The status of GPS-photogrammetry with kinematic DGPS-positioning to overcome this disadvantages, is now steadly progressive since the first possibility has been proved. The completed satellite configuration, powerful receiver function and upgraded software for kinematic DGPS-positioning have extensively improved the accuracy of combined bundle adjustment. So the research for the operational use of GPS-photogrammetry is absolutely necessary. The presented test field was designed for identification of subsidences in a coal mining area, flown with 60% sidelap and cross strips. Just with 6 control points and combined block adjustment instead of the traditionally used 21 horizontal and 81 vertical control points the same ground accuracy has been reached. The accuracy of kinematic GPS-positioning and combined block adjustment was independent upon the distance of the ground reference station. It also has been showed that the special model for the systematic error correction in the combined block adjustment.

  • PDF

Accuracy Comparison of Direct Georeferencing and Indirect Georeferencing in the Mobile Mapping System

  • Bae Sang-Keun;Kim Byung-Guk;Sung Jung-Gon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.656-660
    • /
    • 2004
  • The Mobile Mapping System is an effective method to acquire the position and image data using vehicle equipped with the GPS (Global Positioning System), IMU (Inertial Measurement Unit), and CCD camera. It is used in various fields of road facility management, map update, and etc. In the general photogrammetry such as aerial photogrammetry, GCP (Ground Control Point)s are needed to compute the image exterior orientation elements (the position and attitude of camera). These points are measured by field survey at the time of data acquisition. But it costs much time and money. Moreover, it is not possible to make sufficient GCP as much as we want. However Mobile Mapping System is more efficient both in time and money because it can obtain the position and attitude of camera at the time of photographing. That is, Indirect Georeferencing must use GCP to compute the image exterior orientation elements, but on the other hand Direct Georeferencing can directly compute the image exterior orientation elements by GPS/INS. In this paper, we analyze about the positional accuracy comparison of ground point using the Direct Georeferencing and Indirect Georeferencing.

  • PDF

The Effect of Key Point Control Handling for One-leg Standing Postural Adaptation in Hemiplegia (주 조절점 핸들링이 편마비 환자의 한발서기 자세적응에 미치는 영향 - 보바스의 신경발달치료 중심 -)

  • Kim, Dae-Young
    • Journal of Korean Physical Therapy Science
    • /
    • v.8 no.2
    • /
    • pp.1059-1064
    • /
    • 2001
  • This study is aimed at diagnosing transmutation aspect with the respective of hemiplegia patient's static adaptation of posture which is influenced by anti-gravity excercise, center of gravity shifting movement and segmental movement adaption of the legs and arms by key-point control in the process of Bobatli's treatment approach. The patients for the investigation of this study were selected as a total 17 patients who were doing the physical-therapy in Tae-gu Rehabilitation Center, and diagnosed as hemiplegia patients by Rehabilitation Medicine department in Kyung-buk University hospital. And also, there investigated into temporal transition that keep the attitude with one-leg standing on the ground concerning static attitude adaption on the basis of the before of anti-gravity movement and the after of 4-weeks movement. The findings of this study were as follows: With the respective the time to keep standing pose by one-leg at static attitude transmutation, affected side showed meaningful differences as a l.86/sec, 2.62/sec at 4 weeks later considering the before and after of this experiment.(p<0.01), non-affected side at the aspect of attitude keeping time, but there didn't showed meaningful differences statistically.

  • PDF

Design and Flight Test of Path Following System for an Unmanned Airship (무인 비행선의 자동 경로 추종 시스템 개발 및 비행시험)

  • Jung, Kyun-Myung;Sung, Jae-Min;Kim, Byoung-Soo;Je, Jeong-Hyeong;Lee, Sung-Gun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.5
    • /
    • pp.498-509
    • /
    • 2010
  • In this paper, a waypoint guidance law Line Tracking algorithm is designed for testing an Unmanned Airship. In order to verify, we develop an autonomous flight control and test system of unmanned airship. The flight test system is composed FCC (Flight Control Computer), GCS (Ground Control System), Autopilot & Guidance program, GUI (Graphic User Interface) based analysis program, and Test Log Sheet for the management of flight test data. It contains flight test results of single-path & multi-path following, one point continuation turn, LOS guidance, and safe mode for emergency.