• Title/Summary/Keyword: Ground based System

검색결과 2,068건 처리시간 0.166초

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • 한국정보기술학회 영문논문지
    • /
    • 제8권2호
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

GBAS 지상장비 구축을 위한 지상 및 비행시험 평가에 대한 연구 (A Study on Ground and Flight Testing for GBAS Ground System Implementation)

  • 정명숙;배중원;전향식
    • 한국항공운항학회지
    • /
    • 제22권2호
    • /
    • pp.16-26
    • /
    • 2014
  • After the GBAS ground system installing at the airport, a GBAS ground and flight testing must be conducted to verify functionality and performance of the system. Since Korea has no experience of the GBAS ground system installation, GBAS test and evaluation methods have never been studied so far. Therefore this paper analyzes the test items and methods for the GBAS ground and flight testing based on ICAO documents, FAA flight inspection manual and testing reports of other countries. As a result of the analysis, this paper proposes the GBAS ground and flight testing items in korea, also describes the flight procedures for the GBAS flight testing.

낙뢰 보호용 접지시스템 평가를 위한 고주파 접지임피던스 측정시스템의 설계 및 제작 (Design and Fabrication of High Frequency Ground Impedance Measuring System for Assessment of Grounding System for Lightning Protection)

  • 길형준;송길목;김영석;김종민;김영진
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the design and fabrication of high frequency ground impedance measuring system for assessment of grounding system for Lightning protection. The ground impedance measuring system has been designed and fabricated which makes it possible to assess the ground impedance by frequency ranges from 100 Hz to 1 MHz. The effective grounding systems having a very low impedance to electromagnetic disturbance such as lightning surges and noises in microelectronics and high-technology branches are strongly required. In order to analyze the dynamic characteristic of grounding system impedances in lightning and surge protection grounding systems, it is highly desirable to assess the ground impedances as a measure of performance of grounding system in which lightning and switching surge currents with fast rise time and high frequency flow. The measuring system is based on the variable frequency power supply and consists of signal circuit part, main control part, data acquisition and processing unit, and voltage and current probe system. The ground impedance measuring system can be used to assess grounding system during occurrence of lightning.

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • 제22권1호
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

Wibro 기반 비행기지 방어전력 위치식별체계 구축 및 실험 (Implementation and Evaluation of the Wibro-based Location Identification System for Air Base Protection Force)

  • 표상호;구정;고영배;김기형
    • 한국군사과학기술학회지
    • /
    • 제15권3호
    • /
    • pp.306-314
    • /
    • 2012
  • This paper proposes a new system to maximize efficiency of Air Base Protection Operations through the development of location identification software. The Wibro-based location identification system for Air Base Protection Force offers Blue Ground Force digitalized character message which is not exposed to enemy. Also, it is possible to automatically provide the location of Blue Ground Force to Air Base Ground Operations Center. The test result proves that this system is very helpful when Air Base Protection Force executes Air Base Protection Operations.

Comparison between the Application Results of NNM and a GIS-based Decision Support System for Prediction of Ground Level SO2 Concentration in a Coastal Area

  • Park, Ok-Hyun;Seok, Min-Gwang;Sin, Ji-Young
    • Environmental Engineering Research
    • /
    • 제14권2호
    • /
    • pp.111-119
    • /
    • 2009
  • A prototype GIS-based decision support system (DSS) was developed by using a database management system (DBMS), a model management system (MMS), a knowledge-based system (KBS), a graphical user interface (GUI), and a geographical information system (GIS). The method of selecting a dispersion model or a modeling scheme, originally devised by Park and Seok, was developed using our GIS-based DSS. The performances of candidate models or modeling schemes were evaluated by using a single index(statistical score) derived by applying fuzzy inference to statistical measures between the measured and predicted concentrations. The fumigation dispersion model performed better than the models such as industrial source complex short term model(ISCST) and atmospheric dispersion model system(ADMS) for the prediction of the ground level $SO_2$ (1 hr) concentration in a coastal area. However, its coincidence level between actual and calculated values was poor. The neural network models were found to improve the accuracy of predicted ground level $SO_2$ concentration significantly, compared to the fumigation models. The GIS-based DSS may serve as a useful tool for selecting the best prediction model, even for complex terrains.

지상 전투 차량을 위한 다채널 영상 스트리밍 시스템의 회전 구동 대비 품질과 압축 대비 지연 분석 (Rotational Drive-Versus-Quality and Video Compression-Versus-Delay Analysis for Multi-Channel Video Streaming System on Ground Combat Vehicles)

  • 윤지혁;조영걸;장혜민
    • 한국군사과학기술학회지
    • /
    • 제24권1호
    • /
    • pp.31-40
    • /
    • 2021
  • The multi-channel video streaming system is an essential device for future ground combat vehicles. For the system, the application of digital interfaces is required instead of the direct analog method to support selectable multiple channels. However, due to the characteristics of the digital interfaces that require en/decoding and signal conversion, the system should support the ability to adapt to quality and delay requirements depending on how video data is utilized. To support addressed issue, this study designs and emulates the multi-channel compressed-video streaming system of ground combat vehicle's fire control system based on commercial standards. Using the system, this study analyzes the quality of video according to the rotational speed of the acquisition device and Glass-to-Glass (G2G) delay between video acquisition and display devices according to video compression rates. Through these experiments and analysis, this paper presents the design direction of the system having scalability on the latest technology while providing high-quality video data streaming flexibly.

관성항법장치의 실시간 모의를 위한 RTX기반의 MILS S/W 개발 (The Development of MILS Software based on RTX for Real-time Imitation of an Inertial Navigation System)

  • 김기표;최진호;안기현;우덕영
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.353-358
    • /
    • 2011
  • In this paper, we have introduced a Missile In the Loop Simulation(MILS) Software developed for the missile ground test, which is based on a commercial hard real-time operating system(OS) on Windows platform called as Real-Time eXtension(RTX). MILS software makes it possible to test overall system functions of a integrated missile on the ground in the flight conditions by real-time imitating its inertial data. By means of MILS, we have performed missiles ground tests, which result in successful real flight tests.

지중열교환기 설치 조건이 지중 유효 열전도도에 미치는 영향 (Effect of Some Parameters on Ground Effective Thermal Conductivity)

  • 최재호;임효재;공형진;손병후
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.33-38
    • /
    • 2008
  • A ground-loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on ground thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U-tube configurations on ground effective thermal conductivity. In this study, thermal response tests were conducted using a testing device with 9-different ground-loop heat exchangers. From the experimental results, the length of ground-loop heat exchanger affects to the effective thermal conductivity. Among the various grouting materials, the bentonite-based grout with silica sand shows the largest thermal conductivity value.

  • PDF

MEMS 센서 기반 지반진동 정보 크라우드소싱 수집시스템 개발 현황 (Development Status of Crowdsourced Ground Vibration Data Collection System Based on Micro-Electro-Mechanical Systems (MEMS) Sensor)

  • 이상호;권지회;류동우
    • 터널과지하공간
    • /
    • 제28권6호
    • /
    • pp.547-554
    • /
    • 2018
  • 크라우드소싱을 활용한 센서 자료 수집은 기존의 방식으로 얻기 어려운 고밀도 지반 진동 정보의 수집이 가능하다. 본 연구에서는 스마트폰과 같은 소형 전자기기에 탑재된 MEMS 센서를 활용한 크라우드소싱 방식 지반 진동 수집 시스템을 개발하였으며, 이를 위한 기반 체계 설계 및 클라이언트와 서버에 대한 구현을 수행하였다. 해당 시스템은 Android 기반의 스마트폰이나 Android Things 기반의 고정식 장비를 통해 진동 데이터를 신속히 수집하면서 하드웨어의 전력 및 데이터 사용량을 최소화할 수 있도록 설계되었다.