• Title/Summary/Keyword: Ground Source Heatpump System

Search Result 5, Processing Time 0.023 seconds

Heating Performance Analysis of Building Integrated Geothermal System (건물일체형 지열히트펌프시스템의 난방 성능 분석)

  • Jin, Shangzhen;Lee, Jin-Uk;Kim, Tae-Yeon;Leigh, Seung-Bok
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.206-210
    • /
    • 2012
  • Ground source heat pump is a central heating and cooling system that pumps heat to or from the ground. Building Integrated Geothermal system used in this experiment is one of the Ground Source Heat Pump Systems which utilize energy pile. The purpose of this study is to evaluate heating performance of the system. The building is a low-energy experiment apartment in Yonsei University Songdo Campus and the subject is one of the energy reduced houses in this apartment. In the experiment, indoor temperature, outdoor temperature and the inlet and outlet temperature of ground heat exchanger and subject model, were measured. Then the heat pump's Coefficient of performance(COP) of the heat pump was calculated. As a result, the COP of heat pump is 4-5. Although the depth of the ground heat exchanger in this experiment is shallower than usual heat exchanger, the result of heating performance of this system was good as well.

  • PDF

Performance Evaluation of Ground Source Heat Pump System Utilizing Energy Pile in Apartment (공동주택에서 에너지 파일을 이용한 지열히트펌프 시스템의 성능 분석)

  • Lee, Jin-Uk;Kim, Taeyeon;Leigh, Seung-Bok
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2012
  • In Korea, Apartment houses recently occupy over 80% of all buildings. Ground source system has to be designed to consider feature of apartment house. Most apartment houses use PHC pile to get a bearing power of the soil. Therefore, the purpose of this study is to evaluate performance of ground source heat pump system utilizing energy pile under apartment. Object of experiment is low-energy experiment apartment in Song-do and Energy Pile are applied to 80%, 100% energy reduction model for heat-source. First, performance evaluation of Energy Pile geothermal system was done during summer season. As a result, The COP(coefficient of performance) about geothermal heatpump was approximately 5-6 while cooling. In winter season, Long experiment was performed because it was very important to evaluate ground condition for long time. During heating experiment, Indoor room set temperature was $20^{\circ}C$ and kept constant by heating. Coefficient of performance for heat pump and overall system was calculated. It was 3.5-4.5 for COP and 2.5-3.7 for system COP.

Heating Performance Analysis of Building Integrated Geothermal System With Radiant Floor Heating (복사패널이 적용된 건물일체형 지열원 시스템의 난방성능 분석)

  • Jin, Shangzhen;Lee, Jin-Uk;Kim, Taeyeon;Leigh, Seung-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.25-30
    • /
    • 2012
  • Ground source heat pumps(GSHPs) are among the most efficient and comfortable heating and cooling technologies currently available, because they use the earth's natural heat to provide heating, cooling, and often, water heating. And Building Integrated Geothermal System(BIGS) is one of GSHPs which install ground heat exchanger(GHE) in energy pile without borehole to save the investment cost. Therefore, the experiment is to evaluate the heating performance of BIGS in Korea. The experimental results indicate that the average heat pump COP and overall system's COP values are approximately 4.4 and 3.0 in one week. This study shows that the BIGS could be used for heating in Korea.

An Experimental Study on the Thermal Performance Measurement of Large Diameter Borehole Heat Exchanger(LD-BHE) for Tripe-U Pipes Spacer Apply (3중관용 스페이서를 적용한 대구경 지중열교환기의 성능측정에 관한 연구)

  • Lee, Sang-Hoon;Park, Jong-Woo;Lim, Kyoung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.581-586
    • /
    • 2009
  • Knowledge of ground thermal properties is most important for the proper design of large scale BHE(borehole heat exchanger) systems. The type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for insitu determination of design data for large diameter BHE for triple-U spacer apply. The main purpose has been to determine insitu values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a circulation pump, a inline heater, temperature sensors, flow meter, power analysis meter and a data logger for recording the temperature, fluid flow data. A constant heat power is injected into the borehole through the tripl-U pipes system of test rig and the resulting temperature change in the borehole is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective insitu values of rock thermal conductivity and borehole thermal resistance of large diameter BHE for spacer apply.

  • PDF

An Experimental Study on the Thermal Performance Measurement of Standing Column Well type Borehole Heat Exchanger (스탠딩컬럼웰형(SCW) 지중열교환기의 열성능 측정에 관한 실험적 연구)

  • Lee, Sanghoon;Choe, Yongseok;An, Kunmuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.122.2-122.2
    • /
    • 2010
  • Knowledge of ground thermal properties is most important for the proper design of BHE(borehole heat exchanger) systems. The configure type, pipe size and thermal performance of the BHE is highly dependent on the ground source heatpump system-efficiency and instruction cost. Thermal response tests with mobile measurement devices were developed primarily for in-situ determination of design data for Standing Column Well apply. The main purpose has been to determine in-situ values of effective ground thermal conductivity and thermal resistance, including the effect of ground-water flow and natural convection in the boreholes. The test rig is set up on a some trailer, and contains a sub-circulation pump, a boiler, temperature sensors, flow meter and a data logger for recording the temperature and circulation fluid flow data. A constant heating power is injected into the SCW through the test rig and the resulting temperature change in the SCW is recorded. The recorded temperature data are analysed with a line-source model, which gives the effective in-situ values of rock thermal conductivity and thermal resistance of SCW.

  • PDF