• 제목/요약/키워드: Ground Source Heat Pump Systems

검색결과 113건 처리시간 0.027초

수치해석을 통한 저심도 유닛형 지중열교환기의 성능 검토 (Performance Analysis of a Low-Depth Unit-Type Ground Heat Exchanger using Numerical Simulation)

  • 오진환;서장후;남유진
    • 설비공학논문집
    • /
    • 제27권3호
    • /
    • pp.169-173
    • /
    • 2015
  • Recently, ground source heat pump (GSHP) systems have attracted much attention, according to the enhanced social demand of renewable energy. GSHP systems can achieve higher coefficient of performance than the conventional air-source heat pump systems by utilizing stable underground temperature. However, the initial cost of GSHP system is higher than that of the conventional systems, especially, in the small-size buildings. Therefore, it is necessary to develop small-size ground heat exchanger with low cost and quick installation. In this study, a unit-type ground heat exchanger was developed and heat exchange rate was calculated by the numerical simulation. As a result, 27.45 W/m of heat exchange rate was acquired in the condition of $0.5m{\times}0.2m{\times}2m$ unit.

태양열 및 지열 이용 히트펌프 시스템의 성능예측 시뮬레이션에 관한 연구 (Study on the Performance Prediction Simulation of the Heat Pump System using Solar and Geothermal Heat Source)

  • 남유진;까오신양
    • 한국태양에너지학회 논문집
    • /
    • 제34권3호
    • /
    • pp.75-81
    • /
    • 2014
  • Recently, the use of renewable energy has been attracted due to the interest in energy-saving and the reduction of CO2 emission. In order to reduce the energy consumption of the cooling and the heating in the field of the architectural engineering, heat pump systems using renewable energy have been developed and used in various applications. In many researches, integrated heat pump systems are suggested which use solar and geothermal heat as the heat source for cooling and heating. However, it is still difficult to predict the performance of the systems, because the characteristic of heat exchange in each system is complicated and various. In this system, the performance prediction simulation of the heat pump was developed using a dynamic simulation model. This paper describes the summary of the suggested systems and the result of the simulation. The average temperature of the heat source, heating loads and COP were calculated with the cases of different local conditions, different system composition and different operation time by TRNSYS 17.

축열조를 채용한 수평형 지열원 히트펌프 온실 난방 시스템에 관한 연구 (A Study on the Horizontal Ground Source Beat Pump Greenhouse Heating System with Thermal Storage Tank)

  • 박용정;김경훈
    • 에너지공학
    • /
    • 제15권3호
    • /
    • pp.194-201
    • /
    • 2006
  • 온실은 작물의 성장조건을 맞추기 위해서 야간 및 추운 날에는 난방을 해야 한다. 지열원 히트펌프 시스템은 냉난방 시스템에서 두드러진 관심을 보이고 있다. 축열조를 채용한 수평형 지열원 히트펌프 시스템을 온실에 적용하여 성능특성을 조사하였다. 그리고 축열조를 채용한 이유를 자세하게 설명하였다. 축열조는 지열원 히트펌프 시스템의 난방능력보다 큰 난방부하를 대응할 수 있다. 연구 결과, 시스템전체의 성능계수는 2.69로 나타났다.

수주지열정 지열원 열펌프 시스템의 집단주거시설 적용을 위한 기반 기술 분석 (A Study on the SCW Ground Source Heat Pump System Technologies for Residential Cluster Homes)

  • 이광호;도성록;최종민
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권3호
    • /
    • pp.14-20
    • /
    • 2019
  • In this study, the technologies and regulations for distributing standing column well(SCW) ground source heat pump systems to the residential cluster homes were investigated. They have only been installed in the public or commercial building having different load pattern and site structure compared with the residential cluster homes. Some of SCWs for the residential cluster homes should be installed under the basement due to a lack of site area. There are pressure differences between the SCWs installed under ground surface and basement. It is needed to develop the technology or devices to prevent overflow caused by pressure difference among the SCWs. In addition, heat balance algorithm between SCWs should be adopted to maximize the system efficiency. A heat pump having heating, cooling, hot water, heating-hot water, and cooling-hot water modes should be developed for adopting an individual air-conditioning system to the residential cluster homes.

업무용 건물의 지열 히트펌프 시스템에 대한 성능 예측 (Performance Prediction on the Application of a Ground-Source Heat Pump(GSHP) System in an Office Building)

  • 손병후;권한솔
    • 설비공학논문집
    • /
    • 제26권9호
    • /
    • pp.409-415
    • /
    • 2014
  • Ground-source heat pump (GSHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy efficiency. These systems use the ground as a heat source and the heat sink for cooling mode operation. The purpose of this simulation study is to evaluate the performance of a hypothetical GSHP system in an office building and to assess the energy saving effect against the existing HVAC systems (boiler and turbo chiller). We collected monthly energy consumption data from an actual office building ($32,488m^2$) in Seoul, and created a model to calculate the hourly building loads with EnergyPlus. In addition, we used GLD (Ground Loop Design) V8.0, a GSHP system design and simulation software tool, to evaluate hourly and monthly performance of the GSHP system. The energy consumption for the GSHP system based on the hourly simulation results were estimated to be 582.6 MWh/year for cooling and 593.2 MWh/year for heating, while those for the existing HVAC systems were found to be 674.5 MWh/year and 2,496.4 MWh/year, respectively. The seasonal performance factor (SPF) of the GSHP system was also calculated to be in the range of 3.37~4.28.

국내의 주요 지역에서 밀폐형 열교환기의 열전도도 측정 (Measurements of In-situ Thermal Conductivity of Closed Type Ground Heat Exchanger in Korea)

  • 임효재;정계훈;한지원;박경우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3401-3406
    • /
    • 2007
  • This study was performed to acquire the reliable in-situ thermal conductivity of closed type ground heat exchanger used in ground source heat pump. We selected four sites(Cheonan, Daejeon, Daegu, Gwangju) which are central area of South Korea. Test results show that the effective thermal conductivities are 2.33 W/m$^{\circ}C$, 2.50 W/m$^{\circ}C$, 2.75 W/m$^{\circ}C$ and 2.86 W/m$^{\circ}C$. From this data, we can see that thermal conductivity varies about the range of 23% with the sites. Also, thermal conductivity increases up to 20% by changing grouting material from low salica sand to high one.

  • PDF

지열원 멀티 히트펌프의 동절기 난방성능에 관한 실증 연구 (Verification experiment of a ground source multi-heat pump at heating season)

  • 최종민;임효재;강신형;최재호;문제명;권영석;권형진;김록희
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.52-57
    • /
    • 2009
  • This paper describes the multi-heat pumps applied in an ground source heat pump system for an actual building. The performance of a ground source multi-heat pump installed in the field was investigated at heating season. The average COP of the systems with single U-tube and double tube type GLHXs were 4.8 and 5.0, respectively. It is needed to investigate the long term performance of double tube type GLHX, because the reduction of inlet temperature of OD HX for this GLHX was larger than it for U-tube GLHX.

  • PDF

한랭지(몽골) 지열 히트펌프 시스템의 난방 성능 분석 (Heating Performance of Geothermal Heat Pump System Applied in Cold Climate Region(Mongolia))

  • 손병후;최재호;민경천
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.31-38
    • /
    • 2015
  • Geothermal heat pump (GHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. These systems use the ground as a heat source in heating mode operation and a heat sink in cooling mode operation. The aim of this study is to evaluate the heating performance of the GHP system for a residential building ($420m^2$) in Ulaanbaatar, Mongolia. In order to demonstrate the feasibility of a sustainable performance of this system, we installed the water-to-water geothermal heat pump with ten vertical ground heat exchangers and measured operation parameters from October 19, 2013 to March 26, 2014. The results showed that the entering source temperature of brine from the ground heat exchangers was in a range of the design target temperature of $-10^{\circ}C$ for heating. For total values of the representative results, the ground heat exchangers extracted heat of 53.51 MWh from the ground. In addition, the GHP system supplied heat of 83.55 MWh to the building and consumed power of 30.27 MWh. Consequently, the average heating seasonal performance factor ($SPF_h$) of the overall system was evaluated to be 2.76 during the measurement period of the heating season.

동특성 시뮬레이션을 이용한 공기, 지열 및 지하 저수조 열원 소형 열펌프의 경제성 분석 (Economical Analysis of a Small Capacity Heat Pump utilizing Heat Sources of Air, Geothermal and Underground Water Tank using Dynamic Simulation)

  • 양철호;김영일;정광섭
    • 한국지열·수열에너지학회논문집
    • /
    • 제8권4호
    • /
    • pp.17-23
    • /
    • 2012
  • Due to reinforcement of international environment regulation and high oil prices, interest in renewable energy is growing. Countries participating in UNFCCC are continuously putting efforts in reducing greenhouse gas after enforcing Kyoto Protocol into effect on Feb, 2005. Energy used in buildings, which relies heavily on fossil fuel accounts for about 24% of total energy consumption. In this study, air, geothermal and water source heat pump systems for an 322 $m^2$ auditorium in an office building is simulated using TRNSYS version 17 for comparing energy consumptions. The results show that energy consumptions of air, geothermal and water source heat pumps are 14,485, 10,249, and 10,405 kWh, respectively. Annual equal payments which consider both initial and running costs become 5,734,521, 6,403,257 and 5,596,058 Won. Thus, water source heat pump is the best economical choice.

연료전지 지열히트펌프 마이크로제너레이션 IEA ECBCS Annex 54 경제성 평가 연구 (IEA ECBCS Annex 54 Economic Assessment Study of a Fuel Cell Integrated Ground Source Heat Pump Microgeneration System)

  • 나선익;강은철;이의준
    • 설비공학논문집
    • /
    • 제26권5호
    • /
    • pp.199-205
    • /
    • 2014
  • The integration of FC (Fuel Cell) and GSHP (Ground Source Heat Pump) hybrid system could produce a synergistic advantage in thermal and electric way. This study intends to analyse the economical aspect of a FC integrated GSHP hybrid system compared to the conventional system which is consisted with a boiler and a chiller. Based on the hourly simulation, the study indicated that GSHP system and FC+GSHP hybrid system could reduce the energy consumption on a building. The method of the economic assessment has been based on IEA ECBCS Annex 54 Subtask C SPB(Simple Payback) method. The SPB was calculated using the economic balanced year of the alternative system over the conventional (reference) system. The SPB of the alternative systems (GSHP and FC+GSHP) with 50% initial incentive was 4.06 and 26.73 year respectively while the SPB without initial incentive of systems was 10.71 and 57.76 year.