• Title/Summary/Keyword: Ground Settlement

Search Result 1,058, Processing Time 0.023 seconds

An Application of Micropile to Restrain the Settlement of Structure on the Ground Surface caused by Shield Tail Void (실드테일보이드에 의해 발생하는 지표구조물의 침하 억제를 위한 마이크로파일의 적용)

  • 임종철;윤이환;박이근;고호성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.177-184
    • /
    • 1999
  • In soft ground tunneling, shield method is very good for safety of neighboring structures. Although shield tunnel method has the merits to minimize the deformation of ground around tunnel, ground deformations occurred until the material grouted in tail void hardens are inevitable. In this study, the effects of micropile used as one method to restrain the settlement of neighboring structures by the tail void are studied by laboratory model tests. As a basic test result, the effective direction of micropile and the restraint rate of settlement by micropile reinforcement are known.

  • PDF

Analysis of Settlement Characteristics of Shallow Foundation on Sandy Soil Overlained by Rigid Ground (강성지반위 사질토층에 위치한 얕은기초의 침하량특성분석)

  • Hwang, Hui-Seok;Kim, Dong-Geon;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.45-52
    • /
    • 2014
  • In this paper the settlement characteristic of shallow foundation on sandy soil overlained by rigid ground was investigated by analyzing results of model tests. For model experiments, model tests were performed with sandy soils sampled from the field, changing the relative density of sandy soil and the ratio of thickness of sandy layer(H) to the width of model strip footing(B). As result of tests, settlement of sandy soils increases as the value of H/B increases, whereas it increases with relative density of soil. Bearing capacity decreases as the thickness of the sand layer relative to the footing width increases. In order to analyze the settlement characteristics of sandy ground, the results of model tests were compared with the predicted values using the empirical formulas proposed by Terzaghi, De Beer and Schmertmann. The method by De Beer was found to be in good agreements with test results.

  • PDF

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

A Study on Back Analysis Settlement Prediction of Soft Ground Using Numerical Analysis and Measurement Data (수치해석과 계측데이터를 이용한 연약지반의 역해석 침하 예측에 관한 연구)

  • Sangju Jeon;Hyeok Seo;Daehyeon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.9-17
    • /
    • 2024
  • When constructing on soft ground, managing ground settlement and safety is crucial. However, there often exists a significant disparity between the actual behavior of the ground and the design plans. In this study, we aimed to compare and analyze the difference between the predicted settlement based on theoretical formulas and the measured settlement during construction, in order to predict settlement. For this purpose, we analyzed settlement data from 18 construction sites. The results indicated that the back analysis settlement values were similar to the measured settlement values, whereas the design settlement values were significantly higher compared to the measured settlement values. Specifically, the design settlement values were 1.2 to 1.4 times higher than those derived from back analysis using measured values. The RMSE analysis revealed a value of 0.6212m for the design settlement and 0.1697m for the back analysis settlement. The difference between the back analysis settlement and the measured settlement was more than 70% lower than the difference between the design settlement and the measured settlement. This indicates that the back analysis settlement values exhibit lower error rates compared to the design settlement values.

Settlement Restraint of Soft Ground by Low Slump Mortar Injection (저유동설 몰탈주입에 의한 연약지반의 침하억제 효과)

  • 천병식;여유현;정영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.53-67
    • /
    • 2001
  • In this study the pilot test of CGS as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method and effect of settlement restraint. The site far pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occur continuously because this ground is very soft. Site investigations such as SPT, DCPT and vane shear test were performed to determine the characteristics of ground improvement. Field measurements and FDM analysis were performed on purpose to find out the displacement of ground during injection works. From the results of this study, CGS method can be optimized by the control of diagram, space, depth, injection material, and injection pressure. CGS improved soft ground compositely by the bearing effect of CGS columns and reinforcement of adjacent ground. Considering that increase of N value is about 2.1, CGS can be considered as an effective method to increase the bearing capacity as well as to stop the settlement of soft ground. It is also expected to be economic and effective in improvement of ground when it is used in applicable sites.

  • PDF

Safety Evaluation of the Settlement Amount of the Bridge Earthwork Transition Area Using the Ground Penetrating Radar in the Soft Ground Section (연약지반 구간에서 지표투과레이더 활용한 교량 접속부 침하량 안전 평가)

  • Jung, Gukyoung;Jo, Youngkyun;Kim, Sungrae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.17-22
    • /
    • 2022
  • To reduce the bump of bridge/earthwork transition area caused by the settlement of the soft ground during public use, the road agencies have been continuously overlay or repavement at those areas. In this study, the vehicle-mounted ground penetrating radar with 1GHz air-coupled antenna was used to estimate the settlement amount of those areas for nine bridges built in the soft ground. Results shows that it is possible to effectively measure the thickness of pavement up to a depth of 1 m on an asphalt road with ground penetrating radar technology that can inspect under the road surface. Distinctively deformation of the road surface, the variation in the thickness of the pavement measured at bridge/earth transition areas is equivalent to a minimum of 50 mm and a maximum of 600 mm, and there is a risk of cavity in the ground. The difference in the increased pavement thickness is 50~250 mm for each bridge connection, which may cause the differential settlement. In this study, by using the result of the ground penetration radar, a plan for improving drivability and maintenance of the settlement is suggested and applied to the field.

Prediction Method of Settlement Based on Field Monitoring Data for Soft Ground Under Preloading Improvement with Ramp Loading (점증 재하를 고려한 선행재하 공법 적용 연약지반의 현장 계측을 통한 침하량 예측 방법의 개발)

  • Woo, Sang-Inn;Yune, Chan-Young;Baek, Seung-Kyung;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.452-461
    • /
    • 2008
  • Previous settlement prediction method based on settlement monitoring such as hyperbolic, monden method were developed under instantaneous loading condition and have restriction to be applied to soft ground under ramp loading condition. In this study, settlement prediction method under ramp loading was developed. New settlement prediction method under ramp loading considers influence factors of consolidation settlement and increase accuracy of settlement prediction using field monitoring data after ramp loading. Large consolidation tests for ideally controlled one dimensional consolidation under ramp loading condition were performed and the settlement behavior was predicted based on the monitoring data. As a result, new prediction method is expected to have great applicability and practicability for the prediction of settlement behavior.

  • PDF

Residual Settlement Behavior in Soft Ground Improved by PBD during Operating Facilities (PBD공법이 적용된 연약지반에서 운용 중인 시설물의 잔류침하거동)

  • Kang, Gichun;Kim, Taehyung;Jeong, Choonggi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.8
    • /
    • pp.13-21
    • /
    • 2014
  • The Plastic Board Drain is used to improve soft soils deposited in container terminal area at a port. This paper describes settlement behavior of soft ground in this area from PBD installation to the time of operating facilities. Previous researches focused on soil improvement effect of PBD, that is, the settlement occurred during ground improvement period. The residual settlement occurred during operating the facility is very important from the maintenance and management point of view. However, the study of this residual settlement has been rarely conducted. In this study, by analyzing the measured settlement data obtained from the container terminal area at the port, it was verified that the residual settlement induced during operating facilities occurred in a layer with PBD improvement. In addition, by comparison the settlement predicted by a numerical analysis with the settlement measured in the field, it was confirmed that the actual settlement is in the range of predicted settlement.

Relative Settlement Analysis of Soft Ground (연약지반의 상대적 침하 거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.229-240
    • /
    • 2023
  • Instruments are installed in soft ground improvement projects to manage economic and safe construction. When analyzing data, the amount of settlement data over time can be used to understand the overall ground settlement behavior, but it is difficult to analyze the interrelatedness between measurement points. Therefore, to analyze the relative compressive settlement behavior between measurement points, the settlement amount and velocity were processed and defined as the mean settlement difference index (ASi,j) and the slope difference index (SDIi,j). Plotted in the mean settlement difference index - slope difference index (ASi,j-SDIi,j) coordinate system. As a result of the analysis of the relative compaction subsidence behavior between the measuring points, the relationship between the measuring points in the average subsidence difference index - slope difference index coordinate system moved to area 1 as the compaction was completed. By continuously plotting the movement path of the observation point in the corresponding coordinate system, the relative settlement behavior between the measurement points was analyzed, and it was possible to check whether the settlement behavior of the two measurement points was stable or unstable depending on the direction of the path.

A development of the ground settlement evaluation chart on tunnel excavation (터널굴착에 따른 지반침하 예측을 위한 침하량 평가도표 개발)

  • Park, Chi Myeon;You, Kwang-Ho;Lee, Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1105-1123
    • /
    • 2018
  • The main risk factors of tunnel excavation through urban areas are ground settlement and surface sink which caused by ground conditions, excavation method, groundwater condition, excavation length, support method, etc. In the process of ground settlement assessment, the numerical analysis should be conducted considering the displacement and stress due to tunnel excavation. Therefore a technique that can simplify such process and easily evaluate the influence of tunnel excavation is needed. This study focused on the tunnelling-induced ground settlement which is main consideration of underground safety impact assessment. The parametric numerical analyses were performed considering such parameters as ground conditions, tunnel depth, and lateral distance from tunnel center line, etc. A simplified ground settlement evaluation chart was suggested by analyzing tendency of ground subsidence, lateral influence area and character by depth. The applicability of the suggested settlement evaluation chart was verified by comparative numerical analysis of settlement characteristics.