• Title/Summary/Keyword: Ground Receiving Station

Search Result 52, Processing Time 0.021 seconds

A Study on the Configuration and Operation Result of a Simple Ground Receiving Station for Satellite System Education (위성시스템 교육을 위한 간이 지상수신국 구성과 운용 결과)

  • Park, Joo-Won
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.113-128
    • /
    • 2021
  • In this paper, we present a simple ground receiving station as an educational method for a satellite system. Our system is produced similarly to the existing fixed ground station in terms of function by using satellite communication technology and related software commonly used in the amateur radio field. In addition, we conducted operation test to receive signals from operating satellites and confirmed the possibility of using them as a way to educate satellite systems, such as understanding ground station systems through satellite reception experience and satellite state information acquisition, and further designing satellite systems.

Analysis on Receiving Performance Degradation of Ground Station in Lunar Mission (달 잡음에 의한 지상 시스템 수신 성능 열화 분석)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.2
    • /
    • pp.208-216
    • /
    • 2014
  • Ground station in lunar mission is responsible to receive telemetry signal including sensor data from lunar orbiter and/or lander. At preliminary stage of developing this ground station, receiving performance such as antenna size and noise temperature should be designed on the basis of link budget analysis. When the antenna of ground station is pointing to the moon to communicate with lunar orbiter and/or lander, noise level is supposed to be increasing due to the lunar flux density. It means that the moon is working as a noise source to degrade receiving performance when antenna is pointing to the moon. Antenna noise temperature contributed by the moon was firstly calculated and secondary validated by using test configuration in this paper. Consequently, it was shown that antenna noise temperature caused by the moon was quietly matched with measured one and G/T degradation of receiving system in lunar mission can be calculated depending on antenna size and frequency.

Ground Station Design for STSAT-3

  • Kim, Kyung-Hee;Bang, Hyo-Choong;Chae, Jang-Soo;Park, Hong-Young;Lee, Sang-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.283-287
    • /
    • 2011
  • Science and Technology Satellite-3 (STSAT-3) is a 150 kg class micro satellite based with the national space program. The STSAT-3 system consists of a space segment, ground segment, launch service segment, and various external interfaces including additional ground stations to support launch and early operation phases. The major ground segment is the ground station at the Satellite Technology Research Center, Korea Advanced Institute of Science and Technology site. The ground station provides the capability to monitor and control STSAT-3, conduct STSAT-3 mission planning, and receive, process, and distribute STSAT-3 payload data to satisfy the overall missions of STSAT-3. The ground station consists of the mission control element and the data receiving element. This ground station is designed with the concept of low cost and high efficiency. In this paper, the requirements and design of the ground station that has been developed are examined.

GROUND RECEIVING SYSTEM FOR KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Park, Sung-Og;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.804-809
    • /
    • 2002
  • Remote sensing division of satellite technology research center (SaTReC), Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. Developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies related to the ground receiving system fur high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development, the system has been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialised system for KOMPSAT-1. Currently the system is under customisation for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

  • PDF

Ground Receiving System for KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Choi, Hae-Jin;Park, Sung-Og;Lee, Dong-Han;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.191-200
    • /
    • 2003
  • Remote sensing division of satellite technology research center (SaTReC) , Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. The developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies for the ground receiving system for high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development from Dec. 1998 until Aug. 2002, the system had been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialized system for KOMPSAT-1. Currently the system is under customization for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

A Study on Requirement Analysis of GNSS Ground Station System (위성항법 지상국 시스템 요구사항 분석에 관한 연구)

  • Sin, Cheon-Sik;Lee, Sang-Uk;Kim, Jae-Hun
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.1
    • /
    • pp.48-55
    • /
    • 2007
  • The system requirement definition, system configuration, major parameters for GNSS ground station development are presented in this paper. GNSS ground station system consists of the GNSS sensor station, up link station and monitoring & control system. The GNSS sensor station consists of navigation receiver subsystem which process the GPS and Galileo navigation signal, automic clock subsystem, meteorological data receiving subsystem and navigation data processing subsystem. To communicate the error correction of navigation fate, GNSS sensor station interface with GNSS Control Center.

  • PDF

Performance Test for the SIGMA Communication System

  • Jeong, Seonyeong;Lee, Hyojeong;Lee, Seongwhan;Shin, Jehyuck;Lee, Jungkyu;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.335-344
    • /
    • 2016
  • Scientific CubeSat with Instruments for Global Magnetic Fields and Radiations (SIGMA) is a 3-U size CubeSat that will be operated in low earth orbit (LEO). The SIGMA communication system uses a very high frequency (VHF) band for uplink and an ultra high frequency (UHF) band for downlink. Both frequencies belong to an amateur band. The ground station that communicates with SIGMA is located at Kyung Hee Astronomical Observatory (KHAO). For reliable communication, we carried out a laboratory (LAB) test and far-field tests between the CubeSat and a ground station. In the field test, we considered test parameters such as attenuation, antenna deployment, CubeSat body attitude, and Doppler frequency shift in transmitting commands and receiving data. In this paper, we present a communication performance test of SIGMA, a link budget analysis, and a field test process. We also compare the link budget with the field test results of transmitting commands and receiving data.

Design of the Crane position control System using GPS and USN (GPS와 USN을 이용한 크레인 위치제어 시스템 설계)

  • Lim, Su-Il;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1520-1525
    • /
    • 2009
  • In this paper, we study and simulate the suggested position control system using GPS and USN to replace the existing control system of a crane. For the correct approach, the position control system of a crane is divided into the control system of the ground station and the mobile station The hardware is comprised of GPS receiving module to receive the position control data of a crane from GPS satellites, bluetooth communication module for the data communication between the ground station and the mobile station, supersonic sensor module for a precise position control of a crane, motor to replace a crane roller, embedded MCU(ATmega128L) and so on. In here, an embedded MCU controls GPS receiving module, bluetooth communication module and supersonic sensor module. The Software is comprised of three programs. Three programs are the program to filter GGA output part in a receiving data of GPS receiving module, the driving program for supersonic sensor module, the digital map program to monitor a crane location. From the simulation results, it is demonstrated that the proposed system has the capability of crane position control with 1cm precision.

Ground station Baseband Controller(GBC) Development of STSAT-2 (과학기술위성2호 관제를 위한 Ground station Baseband Controller(GBC) 개발)

  • Oh Dae-Soo;Oh Seung-Han;Park Hong-Young;Kim Kyung-Hee;Cha Won-Ho;Lim Chul-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.8
    • /
    • pp.482-485
    • /
    • 2005
  • STSAT-2 is first satellite which is scheduled to launch by first Korea launcher. Ground station Baseband Controller(GBC) for operating STSAT-2 is now developing. GBC control data flow path between satellite operation computers and ground station antennas and count number of received data packets among demodulated audio signals from three antennas and also set data flow path to good-receiving antenna automatically In GBC two uplink FSK modulators(1.2kbps, 9.6kbps) and six downlink FSK demodulators(9.6kbps, 38.4kbps) are embedded. STSAT-2 GBC hardware is more simpler than STSAT-1 GBC by using FPGA in which all digital logic implemented. Now test and debugging of GBC hardware and Software(FPGA Code and CBC Manager Program) is well progressing in SaTReC, KAIST. This paper introduce GBC structure, functions and test results.

Ground station Baseband Controller(GBC) Development of STSAT-2 (과학기술위성2호 관제를 위한 Ground station Baseband Controller(GBC) 개발)

  • Oh, Dae-Soo;Oh, Seung-Han;Park, Hong-Young;Kim, Kyung-Hee;Cha, Won-Ho;Lim, Chul-Woo;Ryu, Chang-Wan;Hwang, Dong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.116-118
    • /
    • 2005
  • STSAT-2 is first satellite which is scheduled to launch by first Korea launcher. After launch Ground station Baseband Controller(GBC) for operating STSAT-2 is now developing. GBC control data flow path between satellite operation computers and ground station antennas. and GBC count number of received data packets among demodulated audio signals from three antennas and set data flow path to good-receiving antenna automatically. In GBC two uplink FSK modulators(1.2kbps, 9.6kbps) and six downlink FSK demodulators(9.6kbps, 38.4kbps) are embedded. STSAT-2 GBC hardware is more simpler than STSAT-1 GBC by using FPGA in which all digital logic implemented. Now test and debugging of GBC hardware and Software(FPGA Code and GBC Manager Program) is well progressing in SaTReC, KAIST. This paper introduce GBC structure, functions and test results.

  • PDF