• Title/Summary/Keyword: Ground Measurement

Search Result 1,552, Processing Time 0.024 seconds

Real-time Recognition of the Terrain Configuration to Increase Driving Stability for Unmanned Robots (안정성 향상을 위한 자율 주행 로봇의 실시간 접촉 지면 형상인식)

  • Jeon, Bongsoo;Kim, Jayoung;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.283-291
    • /
    • 2013
  • Methods for measuring or estimating of ground shape by a laser range finder and a vision sensor(exteroceptive sensors) have critical weakness in terms that these methods need prior database built to distinguish acquired data as unique surface condition for driving. Also, ground information by exteroceptive sensors does not reflect the deflection of ground surface caused by the movement of UGVs. Thereby, UGVs have some difficulties regarding to finding optimal driving conditions for maximum maneuverability. Therefore, this paper proposes a method of recognizing exact and precise ground shape using Inertial Measurement Unit(IMU) as a proprioceptive sensor. In this paper, firstly this method recognizes attitude of a robot in real-time using IMU and compensates attitude data of a robot with angle errors through analysis of vehicle dynamics. This method is verified by outdoor driving experiments of a real mobile robot.

Orbit Determination of LEO Satellite using Ground Tracking Data (지상국 추적 데이터를 이용한 저궤도 위성의 궤도결정 특성 분석)

  • Jung, Ok-Chul;Choi, Su-Jin;Chung, Dae-Won;Kim, Eun-Kyou;Kim, Hak-Jung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.170-176
    • /
    • 2011
  • This paper analyzes the orbit determination results using azimuth and elevation angle from ground tracking data, which has the standard data interface format, GEOS-C. The ground tracking data is very useful for initial orbit determination after a satellite launch. In this paper, the quality of the measurement data has been investigated using a variety of real tracking passes, compared with the high precision orbit data of KOMPSAT-2. The accumulated tracking data from consecutive satellite-ground passes is processed for orbit determination using least square method. The accuracy of orbit determination result is also presented.

Methodology to Measure Stress Within Sand Ground Using Force Sensing Resistors (박막형 압전 센서를 활용한 사질토 지반 지중 응력 측정 방법론)

  • Kim, Dong Kyun;Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.115-123
    • /
    • 2024
  • Stress is an invisible physical quantity, necessitating the use of earth pressure cells for its measurement within theground. Traditional strain-gauge type earth pressure cells, due to their rigidity, can distribute stress within the ground and subsequently affect the accuracy of earth pressure measurements. In contrast, force sensing resistors are thin and flexible, enabling the minimization of stress disturbance when measuring stress within the ground. This study developed a system that utilizes force sensing resistors to measure ground stress. It involved constructing a soil chamber for calibrating the force sensing resistors, assessing the variability of measurements from resistors embedded in sand ground, and verifying the attachment of pucks to the sensing area of the resistors.

A study of in-process optical measurement of surface roughness

  • Noda, Atsuhiko;Harada, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.541-544
    • /
    • 1993
  • This paper attempts to propose new procedures to evaluate roughness of ground metallic surface in the range of 1-10.mu.m from data gained by an optical, in-process measurement of the surfaces. Studies are made to process the data of reflected lights pointed at the surface to be measured. Results obtained are compared with those of measurement by stylus roughness meter. Correlations between the two types of roughness measurement are well. The proposed method can be used as a sensor for a polishing robot.

  • PDF

Analysis of Factors Influencing the Measurement Error of Ground-based LiDAR (지상기반 라이다의 측정 오차에 영향을 미치는 요인 분석)

  • Kang, Dong-Bum;Huh, Jong-Chul;Ko, Kyung-Nam
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.25-37
    • /
    • 2017
  • A study on factors influencing measurement error of Ground-based LiDAR(Light Detection And Ranging) system was conducted in Kimnyeong wind turbine test site on Jeju Island. Three properties of wind including inclined angle, turbulence intensity and power law exponent were taken into account as factors influencing the measurement error of Ground-based LiDAR. In order to calculate LiDAR measurements error, 2.5-month wind speed data collected from LiDAR (WindCube v2) were compared with concurrent data from the anemometer on a nearby 120m-high meteorological mast. In addition, data filtering was performed and its filtering criteria was based on the findings at previous researches. As a result, at 100m above ground level, absolute LiDAR error rate with absolute inclined angle showed 4.58~13.40% and 0.77 of the coefficients of determination, $R^2$. That with turbulence intensity showed 3.58~23.94% and 0.93 of $R^2$ while that with power law exponent showed 4.71~9.53% and 0.41 of $R^2$. Therefore, it was confirmed that the LiDAR measurement error was highly affected by inclined angle and turbulence intensity, while that did not much depend on power law exponent.

Relative Settlement Analysis of Soft Ground (연약지반의 상대적 침하 거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.229-240
    • /
    • 2023
  • Instruments are installed in soft ground improvement projects to manage economic and safe construction. When analyzing data, the amount of settlement data over time can be used to understand the overall ground settlement behavior, but it is difficult to analyze the interrelatedness between measurement points. Therefore, to analyze the relative compressive settlement behavior between measurement points, the settlement amount and velocity were processed and defined as the mean settlement difference index (ASi,j) and the slope difference index (SDIi,j). Plotted in the mean settlement difference index - slope difference index (ASi,j-SDIi,j) coordinate system. As a result of the analysis of the relative compaction subsidence behavior between the measuring points, the relationship between the measuring points in the average subsidence difference index - slope difference index coordinate system moved to area 1 as the compaction was completed. By continuously plotting the movement path of the observation point in the corresponding coordinate system, the relative settlement behavior between the measurement points was analyzed, and it was possible to check whether the settlement behavior of the two measurement points was stable or unstable depending on the direction of the path.

Comparative Validation of WindCube LIDAR and Remtech SODAR for Wind Resource Assessment - Remote Sensing Campaign at Pohang Accelerator Laboratory (풍력자원평가용 윈드큐브 라이다와 렘텍 소다의 비교.검증 - 포항가속기 원격탐사 캠페인)

  • Kim, Hyun-Goo;Chyng, Chin-Wha;An, Hae-Joon;Ji, Yeong-Mi
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The remote-sensng campaign was performed at the Pohang Accelerator Laboratory where is located in a basin 6km inland from Yeongil Bay. The campaign aimed uncertainty assessment of Remtech PA0 SODAR through a mutual comparison with WindCube LIDAR, the remote-sensing equipment for wind resource assessment. The joint observation was carried out by changing the setup for measurement heights three times over two months. The LIDAR measurement was assumed as the reference and the uncertainty of SODAR measurement was quantitatively assessed. Compared with LIDAR, the data availability of SODAR was about half. The wind speed measurement was fitted to a slope of 0.94 and $R^2$ of 0.79 to the LIDAR measurement. However, the relative standard deviation was about 17% under 150m above ground level. Therefore, the Remtech PA0 SODAR is judged to be unsuitable for the evaluation of wind resource assessment and wind turbine performance test, which require accuracy of measurement.

Measurement of the Ground Resistance using the Fall-of-Potential Method with the Vertically-placed Current and Potential Auxiliary Electrodes (전류 및 전위 보조전극을 수직으로 배치하는 전위강하법을 이용한 접지저항의 측정)

  • Lee, Bok-Hee;Kim, Ki-Bok;Kim, You-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.3
    • /
    • pp.53-60
    • /
    • 2012
  • The fall-of-potential method is commonly used in measuring the ground resistance of large-scaled grounding system and the current and potential auxiliary electrodes are horizontally arranged. Because the distances between the ground grid to be tested and auxiliary electrodes are limited in downtown areas, it is very difficult to measure accurately the ground resistance of large-scaled grounding system. In this paper, the fall-of-potential method of measuring the ground resistance with the vertically-placed current and potential auxiliary electrodes was examined and discussed. The validity and good accuracy of the proposed method of measuring the ground resistance were confirmed through various simulations and actual tests carried out in uniform and two-layer soil structures.

Thermal Conductivity Measurement of Grouting Materials for Ground Heat Exchanger Borehole (지중 열교환기 보어홀 그라우팅 재료의 열전도도 측정)

  • Sohn, Byong-Hu;Shin, Hyun-Joon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.6
    • /
    • pp.493-500
    • /
    • 2006
  • This paper concerns the measurement of thermal conductivity of grouting materials for ground loop heat exchanger. A thermal conductivity meter, QTM-500 based on modified transient hot wire method was used to measure the thermal conductivity of neat bentonite and mixtures of bentonite and various additives. Relative to the total mixture mass, as the percent additive was increased the mixture thermal conductivity increased. For the bentonite-silica sand mixtures, the higher density of the sand particles resulted in much higher mixture thermal conductivity. The quartzite and silica sands produced the largest increases in mixture thermal conductivity, while common masonry and limestone sands produced lower thermal conductivity increases.

COMS SOC 13M ANTENNA G/T MEASUREMENT

  • Park, Durk-Jong;Yang, Hyung-Mo;Ahn, Sang-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.489-492
    • /
    • 2007
  • At COMS SOC, 13m antenna system will serve to transmit command and receive telemetry in S-Band for COMS operation. In addition, Sensor Data and LRIT/HRIT in L-Band will be received and LRIT/HRIT in S-Band will be transmitted through this antenna system. In many cases, G/T is used as barometer to estimate the receiving capability of antenna system. To estimate G/T, this paper presents two approaches, one is analysis based on the specification of antenna and RF equipment while the other is measurement by using Sun. From the results, G/T was proven as more than 20dB/K and it means that the required G/T, 19dB/K is verified successfully.

  • PDF