• Title/Summary/Keyword: Ground Information Extraction

Search Result 136, Processing Time 0.029 seconds

A Study on 3D Road Extraction From Three Linear Scanner

  • Yun, SHI;SHIBASAKI, Ryosuke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.301-303
    • /
    • 2003
  • The extraction of 3D road network from high-resolution aerial images is still one of the current challenges in digital photogrammetry and computer vision. For many years, there are many researcher groups working for this task, but unt il now, there are no papers for doing this with TLS (Three linear scanner), which has been developed for the past several years, and has very high-resolution (about 3 cm in ground resolution). In this paper, we present a methodology of road extraction from high-resolution digital imagery taken over urban areas using this modern photogrammetry’s scanner (TLS). The key features of the approach are: (1) Because of high resolution of TLS image, our extraction method is especially designed for constructing 3D road map for next -generation digital navigation map; (2) for extracting road, we use the global context of the intensity variations associated with different features of road (i.e. zebra line and center line), prior to any local edge. So extraction can become comparatively easy, because we can use different special edge detector according different features. The results achieved with our approach show that it is possible and economic to extract 3D road data from Three Linear Scanner to construct next -generation digital navigation road map.

  • PDF

Parameter extraction and signal transient of IC interconnects on silicon substrate (실리콘기판 효과를 고려한 전송선 파라미터 추출 및 신호 천이)

  • 유한종;어영선
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.871-874
    • /
    • 1998
  • A new transmission line parameter extraction method of iC interconnects on silicon substrate is presented. To extract the acurate parameters, the silicon substrate effects were taken into account. Since the electromagnetic fields under the silicon substrate are propagated with slow wave mode, effective dielectric constant and different ground plane with the multi-layer dielectric structures were employed for inductance and capacitance matrix determination. Then accurate signal transients simulation were performed with HSPICE by using the parameters. It was shown that the simulation resutls has an excellent agreement with TDR/TDT measurements.

  • PDF

The Real-Time Height Measurement through a Geometry Information and 0bject Extraction (기하학 정보와 객체 추출을 통한 실시간 높이 측정)

  • Kim Jong Su;Kim Tae Yong;Choi Jong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12C
    • /
    • pp.1652-1659
    • /
    • 2004
  • In this paper, we propose the algorithm that automatically measures the height of the object to move on the base plane by using the geometric information. To extract a moving object from real-time images creates the background image and each pixel is modeled by the three values. The extracted region is represented by cardboard model and calculates the coordinate center in the each part. The top and bottom point of an object are extracted by the calculated coordinate center and an iterative computation. The two points, top and bottom, are used for measuring the height. Given the vanishing line of the ground plane, the vertical vanishing point, and at least one reference height in the scene; then the height of any point from the ground may be computed by specifying the image of the point and the image of the vertical intersection with the ground plane at that point. Through a confidence valuation of the height to be measured, we confirmed similar actual height and result in the simulation experiment.

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

Terrain Cover Classification Technique Based on Support Vector Machine (Support Vector Machine 기반 지형분류 기법)

  • Sung, Gi-Yeul;Park, Joon-Sung;Lyou, Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.55-59
    • /
    • 2008
  • For effective mobility control of UGV(unmanned ground vehicle), the terrain cover classification is an important component as well as terrain geometry recognition and obstacle detection. The vision based terrain cover classification algorithm consists of pre-processing, feature extraction, classification and post-processing. In this paper, we present a method to classify terrain covers based on the color and texture information. The color space conversion is performed for the pre-processing, the wavelet transform is applied for feature extraction, and the SVM(support vector machine) is applied for the classifier. Experimental results show that the proposed algorithm has a promising classification performance.

Automatic Tree Extraction Using LIDAR Data (라이다 자료를 이용한 수목추출 자동화)

  • Lee, Su Jee;Kim, Eui Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.1
    • /
    • pp.39-44
    • /
    • 2013
  • Trees are important ground objects that cause oxygen and reduce carbon dioxide in urban areas. For management of the trees, many studies using LIDAR data have been conducted. But, they rely on overseas developed LIDAR data processing software applications because there is a lack of domestically developed software applications. Therefore, this work was intended to propose an automation process that helps to extract trees automatically from LIDAR data. The proposed process has the function to classify LIDAR data and to extract building regions and trees automatically. It was applied to a study place in Yongin to conduct a test. As a result, about 88% of trees were extracted from the automation process.

A Study on Digital Mapping using LiDAR Data (LiDAR 데이터를 이용한 수치지도 제작 방안 연구)

  • Lee, Hyun-Jik;Kim, Hong-Sub;Ru, Ji-Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.2 s.36
    • /
    • pp.33-42
    • /
    • 2006
  • Recently, the studies on the extraction of 3-dimension position information and attribute information of ground surface using LiDAR data. LiDAR data has high locational accuracy, and advantage that can process data more fast because there's not coordinate transform when acquire of Data justly the ground coordinate by Acquiring. The paper using only LiDAR data Manufacture road, building, contour That occupy a many parts of Digital Map. Estimated for possibility of Digital mapping using only LiDAR data As that compare accuracy with Digital map.

  • PDF

GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea (특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출)

  • Lee, Kye Dong;Yoon, Jong Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • The Ministry of Land, Infrastructure and Transport is planning to launch CAS-500 (Compact Advanced Satellite 500) 1 and 2 in 2019 and 2020. Satellite image information collected through CAS-500 can be used in various fields such as global environmental monitoring, topographic map production, analysis for disaster prevention. In order to utilize in various fields like this, it is important to get the location accuracy of the satellite image. In order to establish the precise geometry of the satellite image, it is necessary to establish a precise sensor model using the GCP (Ground Control Point). In order to utilize various fields, step - by - step automation for orthoimage construction is required. To do this, a database of satellite image GCP chip should be structured systematically. Therefore, in this study, we will analyze various techniques for automatic GCP extraction for precise geometry of satellite images.

A Study on the Extraction of Linear Features from Satellite Images and Automatic GCP Filing (위성영상의 선형특징 추출과 이를 이용한 자동 GCP 화일링에 관한 연구)

  • 김정기;강치우;박래홍;이쾌희
    • Korean Journal of Remote Sensing
    • /
    • v.5 no.2
    • /
    • pp.133-145
    • /
    • 1989
  • This paper describes an implementation of linear feature extraction algorithms for satellite images and a method of automatic GCP(Ground Control Point) filing using the extracted linear feature. We propose a new linear feature extraction algorithm which uses magnitude and direction information of edges. The result of applying the proposed algorithm to satellite images are presented and compared with those of the other algorithms. By using the proposed algorithm, automatic GCP filing was successfully performed.