• Title/Summary/Keyword: Ground Induced Vibration

Search Result 132, Processing Time 0.023 seconds

Hepatoprotective Effects of Amorphous and Nnno-Particle Pyeparations of Ursodeoxycholic Acid in CC4-Induced Mice : Effects of Three Types of Fine Grinding Mills (Ursodeoxycholic acid의 무정형 초미립자제제들의 CC4 유도 간손상 생쥐에 대한 보호 효과)

  • 정한영;곽신성;김현일;최우식;이지현;김애라;박태현;정해영;김유정
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The particle size of medicinal materials is an Important physical property that affects the phar-maceutical behaviors such as dissolution, chemical stability, and bioavailability of solid dosage forms. The size reduction of raw medicinal powder is needed to formulate insoluble drugs or slightly soluble medicines and to improve the pharmaceutical properties such as the solubility, the pharmaceutical mixing, and the dispersion. The objective of the present study is to evaluate physiological activity of amorphous and nano-particle prep-arations of insoluble drug, ursodeoxycholic acid (UDCA), which were made by three types of fine grinding mills. The change of physical properties of ground UDCA was conformed by Mastersiger microplus and X-ray diffraction. We have investigated hepatoprotective effects of the nano-particle preparations of UDCA by plan-etary mill, vibration rod mill and jet mill in $CCI_4$-induced oxidatively injured mouse liver. The results showed that nano-particle preparations of UDCA all decreased reactive oxygen sepecies generation and lipid peroxi-dation in $CCI_4$-induced oxidative stress mice. Among them, nano-particle preparations by vibration rod mill and jet mill showed more significantly hepatoprotective effects compared to intact UDCA and planetary mill-ground UDCA. These results suggest that ground UDCA with vibration rod mill and jet mill shows a high amorphous state and the improved dissolution.

Ground effects on wind-induced responses of a closed box girder

  • Mao, Wenhao;Zhou, Zhiyong
    • Wind and Structures
    • /
    • v.25 no.4
    • /
    • pp.397-413
    • /
    • 2017
  • When bridges are constructed with lower heights from the ground, the formed channel between the deck and the ground will inevitably hinder or accelerate the air flow. This in turn will have an impact on the aerodynamic forces on the deck, which may result in unexpected wind-induced responses of bridges. This phenomenon can be referred to "ground effects." So far, no systematic studies into ground effects on the wind-induced responses of closed box girders have been performed. In this paper, wind tunnel tests have been adopted to study the ground effects on the aerodynamic force coefficients and the wind-induced responses of a closed box girder. In correlation with the heights from the ground in two ground roughness, the aerodynamic force coefficients, the Strouhal number ($S_t$), the vortex-induced vibration (VIV) lock-in phenomena over a range of wind velocities, the VIV maximum amplitudes, the system torsional damping ratio, the flutter derivatives, the critical flutter wind speeds and their variation laws correlated with the heights from the ground of a closed box girder have been presented through wind tunnel tests. The outcomes show that the ground effects make the vortex-induced phenomena occur in advance and adversely affect the flutter stability.

Effect of Ground Vibration on Surface Structures and Human Environments -Application of Blasting Vibration to Induced Seismicity in EGS Hydraulic Stimulation- (지반진동이 지상구조물 및 환경에 미치는 영향평가 -발파진동 사례를 통한 EGS 수리자극에의 활용-)

  • Lee, Chung-In;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.521-537
    • /
    • 2013
  • While microseismicity induced by hydraulic stimulation carried out for EGS is useful means in estimating the range of permeability increase, it also affect surface structures and environments. In order to establish a mitigation plan for microseismicity triggered by hydraulic stimulation, we reviewed world-wide guidelines on the impact of ground vibration on the surface structure and human environment by blasting. Case studies from Europe and USA on the microseismicity by hydraulic stimulation are presented and suggestions are made for the guidelines on ground vibration by hydraulic stimulation for the ongoing Pohang EGS project.

The Effects of the Wave Propagation Path of Ground Vibration Induced by the Subway Train on the Reduction of Vibration Level (지하철 주변 지반진동의 전파경로가 진동레벨 감쇠에 미치는 영향)

  • Shin, Han-Chul;Cho, Sun-Kyu;Yang, Shin-Chu;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.631-640
    • /
    • 2009
  • In this paper, Numerical analysis was conducted to study on the reduction of ground vibration level induced by subway train. The analytical results indicated that the soil properties were the predominant factor affecting the ground vibration when the tunnel was located in the soil layer. On the other hand, the rock properties were the predominant one when the tunnel was located in the rock layer. The effects of the angle between the vertical line of vibration source and the receive point on the reduction of vibration level were also evaluated. There were little difference in the reduction of vibration level when the receive point was located within $30^{\circ}$. The vibration level, however, rapidly decreased when the angle between the two points was larger than $40^{\circ}$.

Investigation of blast-induced ground vibration effects on rural buildings

  • Oncu, Mehmet Emin;Yon, Burak;Akkoyun, Ozgur;Taskiran, Taha
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.545-560
    • /
    • 2015
  • In this paper, blast-induced vibration effects on buildings located in rural areas were investigated. Damages to reinforced concrete, adobe and masonry buildings were evaluated in Çatakk$\ddot{o}pr\ddot{u}$ and Susuz villages in Silvan district of Diyarbakir, Turkey. Blasting of stiff rocks to construct highway at vicinity of the villages damaged the buildings seriously. The most important reason of the damages is lack of engineering services and improper constructed buildings according to the current building design codes. Also, it is determined that, inappropriate blast method and soft soil class increased the damages to the buildings. The study focuses on four points: Blast effect on buildings, soil conditions in villages, building damages and evaluation of damage reasons according to the current Turkish Earthquake Code (TEC).

Evaluation of blasting vibration with center-cut methods for tunnel excavation

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Choi, Sung-Oong;Kim, Nam-Soo
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.423-435
    • /
    • 2022
  • Ground vibration generated repeatedly in blasting tunnel excavation sites is known to be one of the major hazards induced by blasting operations. Various studies have been conducted to minimize these hazards, both theoretical and empirical methods using electronic detonator, the deck charge method, the center-cut method among others Among these various existing methods for controlling the ground vibration, in this study, we investigated the cut method. In particular, we analyzed and compared the V-cut method, which is commonly used in tunnel blasting, to the double-drilled parallel method, which has recently been introduced in tunnel excavation site. To understand the rock fragmentation efficiency as well as the ground vibration controllability of the two methods, we performed in-situ field blasting tests with both cut methods at a tunnel excavation site. Additionally, numerical analysis by FLAC3D has been executed for a better understanding of fracture propagation pattern and ground vibration generation by each cut method. Ground vibration levels, by PPVs measured in field blasting tests and PPVs estimated in numerical simulations, showed a lower value in the double-drilled parallel compared with the V-cut method, although the exact values are quite different in field measurement and numerical estimation.

A Study on the Vibration Reduction Characteristics of the Elastic Rail Fastener/Ballast Mat (방진체결구/방진매트의 진동저감특성에 관한 연구)

  • 엄기영;황선근;고태훈;김정근
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.375-380
    • /
    • 2001
  • Generally, countermeasures for the train-induced vibration are divided into the measures at the source, propagation path and receiving object. Among these measures the countermeasure at the source location is the most active and effective one in the field of railroad. In this study, the effectiveness of each anti-vibration measures at the track(source location) such as elastic rail fastener, ballast mat were evaluated through the comparison of acceleration level, insertion loss at the installed locations of each measures. As result of field measurement of vibration at the railroad track supporting structures and on the ground nearby the structures, elastic rail fastener showed vibration reduction effect of 4.5 ∼7.3㏈ on the concrete slab, 1.6∼3.7㏈ on the ground with the train operation speed of 80km/hr. In the case of ballast mat, the vibration reduction effect at the concrete slab and on the ground were 11.9∼13.3㏈ and 6.1∼7.6㏈, respectively.

  • PDF

Stability Assessment of an Adjacent Ground Storage Tank by Blast-induced Vibration (발파진동에 대한 인접한 지상 저장탱크의 안정성 평가)

  • Jong, Yong-Hun;Lee, Chung-In;Choi, Yong-Kun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.19-26
    • /
    • 2006
  • The test blasts were carried out by detonating some single blastholes at two upper sites of the underground storage cavern for the crude oil. One was performed at the entrance site of the construction tunnel and the other at the middle area of the underground storage cavern. Based on the blast-induced nitration measured by the test blasts, we suggested the propagation equations of blasting vibration that were capable of estimating the peak particle velocity. In addition, in order to assess the stability of the adjacent ground storage tank, we did the frequency analysis and the response spectrum analysis with the particle velocity-time history and the particle acceleration-time history that were measured by the test blast carried out on the entrance site of the construction tunnel. In result, it was predicted that the displacement on the highest part of the tank shell was less than the allowable displacement.

Ground-born vibration at multileveled train tunnel crossing

  • Moon, Hoon-Ki;Kim, Kang-Hyun;Kim, Ho-Jong;Shin, Jong-Ho
    • Structural Engineering and Mechanics
    • /
    • v.73 no.4
    • /
    • pp.367-379
    • /
    • 2020
  • In recent railway projects where the railway connects between cities, newly planned tunnels are often located close to, or beneath an existing tunnel. Many claims and petitions have voiced public concern about the vibration and noise resulting from the situation. Vibrations and noises are engineering issues as well as environmental problems, and have become more important as people have become more concerned with their the quality of life. However, it is unlikely that the effects of vibration in situations where trains simultaneously pass a multileveled tunnel crossing have been appropriately considered in the phase of planning and design. This study investigates the superposition characteristic of ground-born vibrations from a multileveled tunnel crossing. The results from model tests and numerical analysis show that the ground-born vibration can be amplified by a maximum of about 30% compared to that resulting from the existing single tunnel. Numerical parametric study has also shown that the vibration amplification effect increases as the ground stiffness, the tunnel depth, and the distance between tunnels decrease.