• Title/Summary/Keyword: Ground Equipment

Search Result 745, Processing Time 0.028 seconds

A Study of TCP LINK based Real-Time Secure Communication Research in the Ocean (해상에서 실시간 TCP 링크관절 보안통신 연구)

  • Yoo, Jaewon;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.250-253
    • /
    • 2014
  • Due to limited resource, marine communication is severely limited when compared to communications in land. Radio relay facilities, etc. based on a wired network through a long distance communication is possible. In addition, the aircraft is in the air, the ground-based network service based on long-range straight-line distance and elevation (LOS: Line of Sight) communications. On the other hand, the distance in a straight line to the sea, the sea level because communication is limited or through satellite, underwater communications relay equipment installed in the communication scheme has been investigated.. In this paper, using TCP-based real-time joint maritime security communication links were studied. Harsh marine environment, real-time communication that can provide secure communications and propose a LINK joint. In this study, more secure, and convenient communications at sea, a plan was presented to you.

  • PDF

Research of Small Gas Turbine Engine Control Logic by Engine Failure Mode Simulation (소형 가스터빈엔진 고장모드 모사를 통한 제어로직 연구)

  • Lee, Kyungjae;Kim, Sunguk;Back, Kyeungmi;Rhee, Dongho;Kang, Young Seok;Kho, Sunghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.88-97
    • /
    • 2021
  • The controller of the gas turbine engine is a component that needs to be developed for the development of the gas turbine engine because it is impossible to get the technology transferred from the engine manufacturer due to the import and export regulation. As a part of the engine control logic research, the Korea Aerospace Research Institute conducted a failure diagnostic research using a small gas turbine engine. Before simulating the engine fault, the ground test was performed to analyze normal behavior and performance of engine. Afterwards, the control logic analysis test equipment was established to simulate various engine fault. It is intended to provide background knowledge to engine control logic research for various engine failure conditions.

UAV and LiDAR SLAM Combination Effectiveness Review for Indoor and Outdoor Reverse Engineering of Multi-Story Building (복층 건물 실내외 역설계를 위한 UAV 및 LiDAR SLAM 조합 효용성 검토)

  • Kang, Joon-Oh;Lee, Yong-Chang
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.69-79
    • /
    • 2020
  • TRecently, smart cities that solve various problems in cities based on IoT technology are in the spotlight. In particular, cases of BIM application for smooth management of construction and maintenance are increasing, and spatial information is converted into 3D data through convergence technology and used for safety diagnosis. The purpose of this study is to create and combine point clouds of a multi-story building by using a ground laser scanner and a handheld LiDAR SLAM among UAV and LiDAR equipment, supplementing the Occluded area and disadvantages of each technology, examine the effectiveness of indoor and outdoor reverse design by observing shape reproduction and accuracy. As a result of the review, it was confirmed that the coordinate accuracy of the data was improved by creating and combining the indoor and outdoor point clouds of the multi-story building using three technologies. In particular, by supplementing the shortcomings of each technology, the completeness of the shape reproduction of the building was improved, the Occluded area and boundary were clearly distinguished, and the effectiveness of reverse engineering was verified.

Case Study on the Building Organization of Medibio Research Laboratory Facilities in Research-driven Hospital (연구중심병원 의생명연구원의 실험실 구성 사례 조사)

  • Kim, Young-Aee
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.95-104
    • /
    • 2018
  • Healthcare technology has been growing and fostering cooperation between industry, university and hospitals as growth engines in korea. So, the medibio research institutes in hospital have been constructed to promote research and industrialization centering on healthcare technology. The purpose of this study is to investigate the cases of research institutes in hospitals, and search the characteristics of building organization of medibio research laboratory facilities. Case study is investigated by floor plan, homepage and site visits about five research institutes selected in research-driven hospitals. The facility title and size of research laboratory is originated from site area and research building location. The building function include not only the research lab and business office reflecting on the development platform, and but assembly and meeting room in the ground level. Laboratory floor plans have three types, rectangular, rectangular+linear and linear type, one is traditional and efficient, the others are people and friendly. And building core types are correlated with lab space unit modules, single and double side core are shown in rectangular type. All the laboratories are open lab, composed with laboratory bench and research note writing desk facing the lab service and enclosed lab-support area. And they have communication space looking as warm and cozy common area for the innovation, convergence and collaboration. As the high risk of contamination and high standard for safety and security, equipment and facilities are well managed with biological environment including BSC, fume hood, PCR classification, eye washing and emergency shower.

Experimental Study on the Performance Characteristics of Geothermal DTH Hammer with Foot Valve (풋 밸브가 적용된 지열 천공 DTH 해머의 성능 특성에 대한 실험적 연구)

  • Cho, Min Jae;Sim, Jung-Bo;Kim, Young Won
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.1
    • /
    • pp.14-22
    • /
    • 2021
  • Drilling equipment is an essential part used in various fields such as construction, mining, etc., and it has drawn increasing attention in recent years. The drilling method is generally divided into three types. There are a top hammer method that strikes on the ground, a DTH (Down-The-Hole) method that directly strikes a bit in an underground area, and a rotary method that drills by using rotational force. Among them, the DTH method is most commonly used because it enables efficient drilling compared to other drilling methods. In the conventional DTH hammer, the valve between the piston and the bit is opened and closed using a face to face method. In order to improve the power of the DTH hammer, a DTH hammer with foot valve which is capable of instantaneous opening and closing is used in the drilling field. In this study, we designed a lab-scale DTH hammer with the foot valve, and manufactured an evaluation device for the experiment of the DTH hammer. In addition, we analyzed the performance of the DTH hammer adopted with foot valve according to the pressure range of 3-10 bar. As a result, the internal pressure distribution in the DTH hammer was experimentally analyzed, and then, the movement of the piston according to the pressure was predicted. We believe that this study provides the useful results to explain the performance characteristics of the DTH hammer with the foot valve.

Electromagnetic Susceptibility Design of Tracking Radar Systems (추적 레이다 시스템의 전자기파 내성 설계)

  • Hong-Rak Kim;Youn-Jin Kim;Seong-Ho Park;Man Hee LEE;Da-Been LEE
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.51-59
    • /
    • 2023
  • The tracking radar system is installed and operated on the ground, ships, and aircraft, and requires a design to withstand electromagnetic interference with nearby electronic devices. In this case, radiation and immunity standards for cable connection must be satisfied to prevent malfunction of other equipment due to electromagnetic wave interference caused by cables connected to the tracking radar. The radiation standard must also be satisfied so that the electromagnetic wave noise generated and radiated from the tracking radar does not affect the peripheral device, so that the immunity standard for the electromagnetic wave emitted from the peripheral device must be satisfied. In this paper, we propose a design to satisfy MIL-STD-461G including CE, CS, RE, and RS, and explain design satisfaction through tests.

Safety Verification of Mounting Flight Video and Data Recorder in the Military Aircraft (군용항공기 내 비행 영상 및 데이터 녹화기 장착에 관한 안전성 검증)

  • Jung-Hyuk Kwon;Gyeong-Nam Kim;Won-Hwa Hwang;Wang-Sang Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.42-57
    • /
    • 2023
  • In this paper, to increase the research capability of flight missions and maintenance in operating military aircraft, we studied the requirements for additional mounting of flight video and data recorders and safety verification methods. The verification process of the recorder equipment itself, structural safety in the aircraft system, power and electrical safety, electromagnetic compatibility, and impact of airworthiness are described in accordance with military standards and operating environment requirements. In addition, through ground/flight tests, the results of functional operation suitable for the influence and demand of interference between the flight video and data recorder and other systems are also presented.

A Study on Filling the Spatio-temporal Observation Gaps in the Lower Atmosphere by Guaranteeing the Accuracy of Wind Observation Data from a Meteorological Drone (기상드론 바람관측자료의 정확도 확보를 통한 대기하층 시공간 관측공백 해소 연구)

  • Seung-Hyeop Lee;Mi Eun Park;Hye-Rim Jeon;Mir Park
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.441-456
    • /
    • 2023
  • The mobile observation method, in which a meteorological drone observes while ascending, can observe the vertical profile of wind at 1 m-interval. In addition, since continuous flights are possible at time intervals of less than 30 minutes, high-resolution observation data can be obtained both spatially and temporally. In this study, we verify the accuracy of mobile observation data from meteorological drone (drone) and fill the spatio-temporal observation gaps in the lower atmosphere. To verify the accuracy of mobile observation data observed by drone, it was compared with rawinsonde observation data. The correlation coefficients between two equipment for a wind speed and direction were 0.89 and 0.91, and the root mean square errors were 0.7 m s-1 and 20.93°. Therefore, it was judged that the drone was suitable for observing vertical profile of the wind using mobile observation method. In addition, we attempted to resolve the observation gaps in the lower atmosphere. First, the vertical observation gaps of the wind profiler between the ground and the 150 m altitude could be resolved by wind observation data using the drone. Secondly, the temporal observation gaps between 3-hour interval in the rawinsonde was resolved through a drone observation case conducted in Taean-gun, Chungcheongnam-do on October 13, 2022. In this case, the drone mobile observation data every 30-minute intervals could observe the low-level jet more detail than the rawinsonde observation data. These results show that the mobile observation data of the drone can be used to fill the spatio-temporal observation gaps in the lower atmosphere.

Development of underground facility information collection technology based on 3D precision exploration (3차원 정밀탐사 지하시설물 정보 수집 기술 개발)

  • Jisong RYU;Yonggu JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.56-66
    • /
    • 2023
  • Safety accidents are increasing, such as changes in groundwater levels due to construction work or natural influences, or ground cave-ins caused by soil runoff from old water supply and sewage pipes. In addition, underground facility management agencies must make efforts to improve the accuracy of underground information through continuous investigation and exploration in accordance with the Special Act on Enhanced Underground Safety Management. Accordingly, in this study, we defined the configuration of equipment and data processing method to collect 3D precise exploration underground facility information and developed 3D underground facility information collection technology to ensure accuracy of underground facilities. As a result of verifying the developed technology, the horizontal accuracy improved by an average of 6cm compared to the existing method, making it possible to acquire 3D underground facility information within the error range of the public survey work regulations.

Effect of the support pressure modes on face stability during shield tunneling

  • Dalong Jin;Yinzun Yang;Rui Zhang;Dajun Yuan;Kang Zhang
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.417-426
    • /
    • 2024
  • Shield tunneling method is widely used to build tunnels in complex geological environment. Stability control of tunnel face is the key to the safety of projects. To improve the excavation efficiency or perform equipment maintenance, the excavation chamber sometimes is not fully filled with support medium, which can reduce the load and increase tunneling speed while easily lead to ground collapse. Due to the high risk of the face failure under non-fully support mode, the tunnel face stability should be carefully evaluated. Whether compressive air is required for compensation and how much air pressure should be provided need to be determined accurately. Based on the upper bound theorem of limit analysis, a non-fully support rotational failure model is developed in this study. The failure mechanism of the model is verified by numerical simulation. It shows that increasing the density of supporting medium could significantly improve the stability of tunnel face while the increase of tunnel diameter would be unfavorable for the face stability. The critical support ratio is used to evaluate the face failure under the nonfully support mode, which could be an important index to determine whether the specific unsupported height could be allowed during shield tunneling. To avoid of face failure under the non-fully support mode, several charts are provided for the assessment of compressed air pressure, which could help engineers to determine the required air pressure for face stability.