• 제목/요약/키워드: Ground Coordinates

Search Result 183, Processing Time 0.03 seconds

Analysis of Tilting Angle of KOMPSAT-1 EOC Image for Improvement of Geometric Accuracy Using Bundle Adjustment

  • Seo, Doo-Chun;Lee, Dong-Han;Kim, Jong-Ah;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.780-785
    • /
    • 2002
  • As the KOMPSAT-1 satellite can roll tilt up to $\pm$45$^{\circ}$, we have analyzed some EOC images taken at different tilt angles fur this study. The required ground coordinates for bundle adjustment and geometric accuracy, are read from the digital map produced by the National Geography Institution, at a scale of 1:5, 000. These are the steps taken for the tilting angle of KOMPSAT-1 satellite to be present in the evaluation of the accuracy of the geometric of each different stereo image data: Firstly, as the tilting angle is different in each image, the satellite dynamic characteristic must be determined by the sensor modeling. Then the best sensor modeling equation is determined. The result of this research, the difference between the RMSE values of individual stereo images is due more the quality of image and ground coordinates than to the tilt angle. The bundle adjustment using three KOMPSAT-1 stereo pairs, first degree of polynomials for modeling the satellite position were sufficient.

  • PDF

Numerical Modeling of Antenna Transmission for Borehole Ground-Penetrating Radar -Code Development- (시추공 레이다를 위한 안테나 전파의 수치 모델링 -프로그램 개발-)

  • Chang, Han-Nu-Ree;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.265-270
    • /
    • 2006
  • High-frequency electromagnetic (EM) wave propagation phenomena associated with borehole ground-penetrating radar (GPR) surveys are complex. To improve the understanding of governing physical processes, we present a finite-difference time-domain solution of Maxwell's equations in cylindrical coordinates. This approach allows us to model the full EM wavefield associated with borehole GPR surveys. The algorithm can be easily implemented perfectly matched layers for absorbing boundaries, frequency-dependent media, and finite-length transmitter antenna.

  • PDF

Application of Video Photogrammetry for Generating and Updating Digital Maps (수치지도 생성 및 갱신을 위한 Video Photogrammetry 적용)

  • Yoo, Hwan-Hee;Sung, Jae-Ryeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.6 no.2 s.12
    • /
    • pp.11-20
    • /
    • 1998
  • Although aerial photogrammetry has been used to generate or update digital maps. It is difficult to make the spatial and attribute data for all kinds of objects on the ground with only aerial photogrammetry. Therefore, we are getting informations of the object on the ground through an on-the-spot survey In order to improve accuracy and reliability of on-the-spot survey in this study, we obtained stereo images from high resolution digital camera (1152*864 pixels) and developed the video photogrammetry which was able to determine the three dimensional coordinates from stereo images by applying DLT(Direct Linear Transformation). Also, the developed video photogrammetry could generate and update the spatial and attribute data in digital maps by using a function that could connect three dimensional coordinates with the attribute data.

  • PDF

Automatic Measuring of GCP's Image Coordinates using Control Point Patch and Auxiliary Points Matching (기준점 패치 및 보조점 정합에 의한 지상기준점의 영상좌표 자동관측)

  • Kang, Myung-Ho;Bang, Soo-Nam;Lee, Yong-Woong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.2 s.25
    • /
    • pp.29-37
    • /
    • 2003
  • An approach is described for automatic measuring of GCP's image coordinates from SPOT imagery and focused on the fulfillment an automatic orientation of satellite images. For the orientation of a stereopair of digital images, firstly, GCP(Ground Control Point) should be selected and then the work for measuring of image coordinates correspond to GCPs is required. In this study, we propose the method for extracting the GCP's image coordinates automatically using an image patch for control points and auxiliary points matching. For the evaluation of measurement accuracy, a comparison between points those are extracted manually and automatically by a proposed method have made. Finally, we shows the feasibility of automatic image coordinates measurment by applying in stereo modeling for SPOT images.

  • PDF

Vision Based Outdoor Terrain Classification for Unmanned Ground Vehicles (무인차량 적용을 위한 영상 기반의 지형 분류 기법)

  • Sung, Gi-Yeul;Kwak, Dong-Min;Lee, Seung-Youn;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.372-378
    • /
    • 2009
  • For effective mobility control of unmanned ground vehicles in outdoor off-road environments, terrain cover classification technology using passive sensors is vital. This paper presents a novel method far terrain classification based on color and texture information of off-road images. It uses a neural network classifier and wavelet features. We exploit the wavelet mean and energy features extracted from multi-channel wavelet transformed images and also utilize the terrain class spatial coordinates of images to include additional features. By comparing the classification performance according to applied features, the experimental results show that the proposed algorithm has a promising result and potential possibilities for autonomous navigation.

Determination of 3D Object Coordinates from Overlapping Omni-directional Images Acquired by a Mobile Mapping System (모바일매핑시스템으로 취득한 중첩 전방위 영상으로부터 3차원 객체좌표의 결정)

  • Oh, Tae-Wan;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.305-315
    • /
    • 2010
  • This research aims to develop a method to determine the 3D coordinates of an object point from overlapping omni-directional images acquired by a ground mobile mapping system and assess their accuracies. In the proposed method, we first define an individual coordinate system on each sensor and the object space and determine the geometric relationships between the systems. Based on these systems and their relationships, we derive a straight line of the corresponding object point candidates for a point of an omni-directional image, and determine the 3D coordinates of the object point by intersecting a pair of straight lines derived from a pair of matched points. We have compared the object coordinates determined through the proposed method with those measured by GPS and a total station for the accuracy assessment and analysis. According to the experimental results, with the appropriate length of baseline and mutual positions between cameras and objects, we can determine the relative coordinates of the object point with the accuracy of several centimeters. The accuracy of the absolute coordinates is ranged from several centimeters to 1 m due to systematic errors. In the future, we plan to improve the accuracy of absolute coordinates by determining more precisely the relationship between the camera and GPS/INS coordinates and performing the calibration of the omni-directional camera

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

Development of Registration Image Chip Tool and Web Server for Building GCP DB (GCP DB 구축을 위한 영상칩 제작 툴 개발 및 Web서버 구축)

  • 손홍규;김기홍;김호성;백종하
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.275-278
    • /
    • 2004
  • The geo-referencing of satellite imagery is a key task in remote sensing. GCPs are points the position of which is known both in the image and in the supporting maps. Mapping function makes the determination of map coordinates of all image pixels possible. Generally manual operations are done to identify image points corresponding to the points on a digital topographic map. In order to accurately measure ground coordinates of GCPs, differential global positioning system (DGPS) surveying are used. To acquire the sufficient number of well distributed GCPs is one of the most time-consuming and cost-consuming tasks. This paper describes the procedure of automatically extracting GCOs using GCP database. GCP image chips and image matching technique are used for automatic extraction of GCPs. We developed image processing tool for making image chip GCPs and Web Server for management of GCPs.

  • PDF

Monopulse Tracking Performance of a Satcom Antenna on a Moving Platform

  • Cho, Gyuhan;Kim, Gwang Tae
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.120-125
    • /
    • 2017
  • A satellite communication (Satcom) antenna mounted on a moving platform provides a controlled heading that enables a geosynchronous satellite to communicate with the ground. A monopulse tracking method is effective for antenna control on a vehicle when it vibrates severely. However, this method has unexpected obstacles and its control performance is insufficient. To improve its control performance, the control command and monopulse error, the signal delay, and the radome effect are evaluated through tests. The authors then propose a method to transform the antenna error from 3D coordinates to 2D antenna coordinates. As a result, the antenna control performance is improved. As indicated in this study, examining antenna systems using the monopulse method on moving platforms is possible by understanding the antenna test process.

Hardness of Approximation for Two-Dimensional Vector Packing Problem with Large Items (큰 사이즈 아이템들에 대한 2차원 벡터 패킹문제의 어려움)

  • Hwang, Hark-Chin;Kang, Jang-Ha
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • We consider a two-dimensional vector packing problem in which each item has size in x- and y-coordinates. The purpose of this paper is to provide a ground work on how hard two-dimensional vector packing problems are for large items. We prove that the problem with each item greater than 1/2-${\varepsilon}$ either in x- or y-coordinates for 0 < ${\varepsilon}$ ${\leq}$ 1/6 has no APTAS unless P = NP.