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큰 사이즈 아이템들에 대한 2차원 벡터 패킹문제의 어려움
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We consider a two-dimensional vector packing problem in which each item has size in x- and y-coordinates. The 
purpose of this paper is to provide a ground work on how hard two-dimensional vector packing problems are for 
large items. We prove that the problem with each item greater than 1/2-ε either in x- or y-coordinates for 0 < ε 
≤ 1/6 has no APTAS unless P = NP.
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1. Introduction

In two-dimensional vector packing problem, items of 
vectors with sizes in two-dimensional unit plane [0, 
1]×[0, 1] need to be packed with minimum number of 
bins in each of which the total sum of items both in 
x- and y-coordinates must be at most one. This pro-
blem arises in loading, scheduling and layout design 
(Spieksma, 1994) along with cassette packing in steel 
making industry (Chang et al., 2005).

As a special case of it, the bin packing problem deals 
with items in single dimension, which is known to be 
NP-Hard (Garey and Johnson, 1979). Hence, it  seems 
better to develop efficient approximation algorithms 
than to find an optimal algorithm. For the theoretical 
analysis of the performance of approximation algo-
rithms, the measures of absolute worst-case ratio and 
asymptotic worst-case ratio are often used. Given a 
problem instance I, we use OPT(I) and A(I) to de-
note the numbers of bins in optimal solution and in 
the solution generated by the heuristic algorithm A, 

respectively. Let RA(I) ≡ A(I)/OPT(I). Then, we for-
mally define the two measures as shown in Garey 
and Johnson (1979) and Coffman Jr et al. (1997). 
The absolute worst-case performance ratio for algo-
rithm A is given by

  ≥    ≤     .

And the asymptotic worst-case ratio for algorithm A is 
defined as

 ≥       ≤      ≥

An algorithm with asymptotic (absolute) worst- case 
ratio at most r≥1 is called r-asymptotic (absolute) ap-
proximation algorithm, respectively. For simplicity, we 
will just use the term r-approximation algorithm in-
stead of r-asymptotic approximation algorithm. If a 
set of r-approximation algorithms exists for any r > 1, 
this set is said to be asymptotic polynomial time ap-
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proximation scheme (APTAS). In one dimensional 
packing, a linear time APTAS has been developed by 
Fernandez de la Vega and Lueker (1981). However, 
for the two dimensional case it has been reported that 
the problem is inapproximable in the sense that no 
APTAS exists unless P = NP (Woeginger, 1997; Che-
kuri, 1998).

For the d-dimensional packing, (d+ε)-approxima-
tion algorithm was developed, where ε > 0 is an arbi-
trary positive real number (Fernandez de la Vega and 
Lueker, 1981). Moreover, Yao (1980) proved that no 
r-approximation algorithms with O(n log n) time com-
plexity can exist where r < d. Chekuri and Khanna 
(1999) improved the result of Fernandez de la Vega 
and Lueker (1981) with an algorithm of asymptotic 
performance 1+εd+O(ln ε-1). Spieksma (1994) applied 
branch and bound method to solve the problem 
optimally. Several lower bounds for branch and bound 
and integer programming formulation with column 
generation approach were developed (Caprara and 
Toth, 2001). Until now, the best known theoretical re-
sult for our problem is the algorithm by Kellerer and 
Kotov (2003), which is a 2-absolute approximation 
algorithm. An 1/(1-ρ)-approximation algorithm has 
been designed (Chang et al., 2005) for the case when 
each item has size no more than ρ, 0 < ρ < 1. Further-
more, if each item vector has size in two-dimensional 
region (0, 1/3]×(1/6, 1/3], it is known that a 4/3-ap-
proximation is possible (Hwang, 2007).

In bin packing, the performance of each algorithm is 
determined mostly by the way how to assign large 
sized items: most successful algorithms first assign 
large items by the their special procedures and then 
small items in a rather greedy way. The APTAS for 
the bin packing also follows this pattern: it first as-
signs large items carefully using an enumerative dy-
namic programming approach and then small items us-
ing greedy FF (First Fit) algorithm. In the two-dimen-
sional case, the algorithm by Kellerer and Kotov (2003) 
first considers large items (the ones with size greater 
than 1/2 either in x- or y-size), and then small items. In 
general, it seems to be true that if there is a good algo-
rithm for large items then it must be also effective for 
the problems with items in entire range [0, 1].

Considering only large items, we can often find an 
optimal solution. In one-dimensional packing, if each 
item has size greater than 1/2, any packing with bins at 
least one item is optimal. For the somewhat general 
case where each item has size greater than 1/3, the 
FFD (First Fit Decreasing) (Johnson, 1973) is known 
to be optimal. So for the two-dimensional vector pack-
ing, it is interesting to know whether or not an optimal 
algorithm exists for problems having large items only. 
The purpose of this paper is to provide a ground work 
on the special two-dimensional vector packing prob-

lems having large items. 
We denote (α∧β )-VP problem as the two-dimen-

sional vector packing problem where all vectors have 
sizes greater than α and β in x- and y-coordinates, 
respectively. Let (α∨β )-VP problem be two-dimen-
sional vector packing problem where all vectors have 
sizes greater than either α in x-coordinate or β in 
y-coordinates. The problems (

∨
 )-VP and (

∧
 )- 

VP can be solved easily using the approach in Hwang 
(2007). 

However, the problems (
∨

 )-VP and (
∨

 )- 
VP both are known to be nonapproximable (Woegin-
ger, 1997; Chekuri, 1998). Consequently, we have a 
question on the critical item-size s such that (s∨s)-VP 
is an easy problem having an optimal algorithm whe-
reas (s-ε ∨ s-ε)-VP is a difficult NP-hard problem. In 
this paper, we will show that the critical item-size is 
1/2; that is, we will prove that (

 -ε∨
 -ε)-VP for 0 < 

ε ≤ 1/6 does not have APTAS unless P = NP. We no-
tice that the problem (

 -ε∨
 -ε)-VP covers the prob-

lem (
∨

 )-VP.
In the next section, we consider the cases where op-

timal algorithms exist and in Section 3 we show that 
the problem (

 -ε∨
 -ε)-VP for 0 < ε ≤ 1/6 does not 

have APTAS unless P = NP. We conclude this paper 
in section 4.

2. Polynomial Solvability for Large 
Items

If the size of items is large and hence the number of 
items that a bin can contain is quite limited, then an 
optimal solution might be obtained in polynomial 
time. We say that a bin is k-bin if it contains k items in 
a packing. We consider two-dimensional vector pack-
ing problem with items of much large size; In partic-
ular, we consider the problems (

∨
 )-VP and (

∧


 )-VP for which we shall see that optimal algorithms 
exist.

Let I be a problem instance of either (
∨

 )-VP or 
(
∧

 )-VP. Note that the total sum of any three vec-
tors from I is over the capacity 1. This means no bin 
can contain more than 2 vectors. In other words, in the 
optimal packing of I, every bin is 1- or 2-bin. Since 
any vector can be packed in a bin (1-bin), it is clear 
that any packing with maximum number of 2-bins is 
an optimal solution. Hence, to find an optimal pack-
ing, we need to maximize the number pairs of two 
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items such that the total sums of the vectors in a pair is 
at most 1 both in x- and y-sizes. The research on max-
imal pairing of two vectors was done in Hwang (2007). 
Hwang (2007) proposed a procedure to create max-
imal number of pairs, whose total sizes are at most 1/2 
both in x- and y-sizes. Applying the procedure, we can 
easily find maximal number of pairs with their sizes at 
most 1. Each pair made in such way can be thought of 
as a bin. Hence, we can assure maximal number of 
2-bins, which is an optimal solution.

3. Nonapproximability for Large 
Items

The polynomial solvability of the 2DVPP significantly 
relies on the lower bound of the item-size. It is then 
natural to ask a question on the critical item-size that 
distinguishes easy problems from hard problems. In 
this section we shall show that (

 -ε∨
 -ε)-VP is NP- 

hard and moreover it does not allow APTAS for any 0
< ε≤ 1/6. We note that these problems include (

∨


 )-VP. 

The proofs in this section follows the ways done in   
Woeginger (1997) and Chekuri (1998). We notice that 
the result in Chekuri (1998) (Woeginger 1997) holds 
for the case where each item has size at least 1/4 (1/5) 
either in x- or y-sizes, respectively. So, a simple de-
ployment of their approach seems not to lead to the 
nonpproximability result for (

 -ε∨
 -ε)-VP problem. 

We first define the concept of L-reduction introduced 
by Papadimitriou and Yannakakis (1991).

Definition 1 : Let Π and Π' be two optimization pro-
blems. For each instance of I(I') of Π(Π') we let S(I) 
(S'(I')) be the set of feasible solutions and π(x)(π'(x')) 
be the value of objective function for the solution x ∈
S(I) (x'∈S'(I')), respectively. An L-reduction from Π to 
Π' is a pair of polynomial time computable functions f 
and g with the following two conditions:

•The function f maps from instances I of Π to in-
stances I' of Π ' such that

 ′  ≤ ⋅ 
 

     for some positive constant  .

•The function g is a mapping from feasible solutions 
of S'(I') to feasible solutions of S(I) such that for ev-
ery x' ∈ S'(I')

 ′  ≤ ⋅ ′ ′ ′  ,
    for some positive constant β.

For the Max SNP-hard problems, it has been proven 
that no APTAS exits unless P = NP by Arora, et al. 
(1992). Hence, when one wants to prove the non-
approximability of an optimization problem, it suffices 
to provide an L-reduction from a Max SNP- Complete 
problem to the optimization problem. We start with 
the Maximum Bounded Three-Dimensional Matching, 
which is proven to be Max SNP- complete by Kann 
(1991).

Maximum Bounded Three-Dimensional Matching 
(Max-3DM-3).
Instance : Disjoint sets A = {a1, ⋯, an}, B = {b1, ⋯, 
bn}, C = {c1, ⋯, cn} and a family F = {T1, ⋯ , Tm} of 
triples with |Tl ∩ A| = |Tl ∩ B| = |Tl ∩ C| = 1 for l = 1, 
⋯, m, where any element of A, B and C occurs in one, 
two or three triples in F. Hence, n ≤ m.
Goal : Find a matching F' from F with largest cardi-
nality.

Before generating vectors in our problem from MAX- 
3DM-3, we first provide small numbers to perturb the 
vectors a little around the values ε and 1/2 .

  ′ 


⋅,  ′ 



⋅, ≤ ≤ ,

  ′ 


⋅,  ′ 



⋅, ≤ ≤ ,

  ′ 


⋅,  ′ 



⋅, ≤ ≤.

We now describe how to reduce the MAX-3DM- 3 
into our problem. We will construct a total of 2 (3n+ 
m) 2-dimensional vectors, the half of which are regu-
lar and the other half of which are dummy vectors. The 
first 3n regular vectors ui, vj and wk correspond to the 
elements in the sets A, B, C and their coordinates are 
given as follows :

          

′ ′ , ≤ ≤ ,

          ′ 

′, ≤ ≤,

          

′ ′,  ≤ ≤ .

The corresponding 3n dummy vectors  ,  ,   are 
defined as :

          ′ 

  ′ , ≤ ≤ ,

           

′ ′ , ≤ ≤ ,
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            ′ 

 ′,  ≤ ≤ .

All the remaining vectors correspond to the elements 
in the set F. For each Tl = {ai, bj, ck}, Tl ∈ F we define 
regular vector zl and dummy vector  as follows :

  ′′′ 

′′′ , ≤  ≤

  

 ′′′ ′′′ , ≤  ≤

Note that regular vectors have coordinates around ε 
or 

  with much larger perturbation compared with 
dummy vectors. A vector is called x-vector if the value 
of x coordinate is not less than that of y coordinate and 
called y-vector if it is not x-vector. We see that the reg-
ular ones ui, wk are x-vectors and vj , zl are y-vectors. 
Also, in the case of dummy vectors ,  are x-vectors 
and  ,   are y-vectors. Hence, the number of x-vec-
tors is the same as that of y-vectors.

Remark 1 : The number of x-vectors is the same as 
that of y-vectors in the instance.

For a given vector  , let x() and y() denote its 
values of x- and y-size, respectively. Then, observing 
the way the coordinates are given, we can see that       
y() = 

 - x() for any vector   in the instance. Now, 
consider four vectors

  
  

   ,  ⋯ ,

where  is either ε or 
  and δr is a small pertur-

bation. Suppose the four vectors can be packed in a 
bin. Then, from the fact that y( r) = 

 - ( r), it follows 
that + = 1.

We want to show that two of them are x-vectors and 
the other two are y-vectors. To the contrary, suppose 
that they are all x-vectors (or y-vectors). Because the 
total sum of x-coordinates is the same as that of y-co-
ordinates, we have




  .

Rearranging the equation, it leads to ε = 
 +

 , 
which is larger than 1/6. This is a contradiction to the 
condition of 0 < ε < 1/6. The other cases where there 
are three x-vectors (y-vectors) and one y-vector (x- 
vector) can be proved in a similar manner.

Remark 2 : If four vectors are packed, then two of 
them are x-vectors, and the others are y-vectors.

Consider the four packed vectors , i = 1, ⋯, 4 
above. Since two of , i =1, ⋯, 4 are x- and the others 
are y-vectors, it follows that  = 1 and  = 0. 
Note that each matching in F consists of three ele-
ments from the sets A, B, and C, respectively. Suppose 
that the four vectors , i = 1, ⋯, 4 are of the same 
type of either regular or dummy. Then, from the way 
the vectors are constructed, it is easy to see that the 
equality  = 0 holds only for the vectors corre-
sponding to a matching in F and its elements.

Remark 3 : Given four vectors of the same type, either 
regular or dummy, if they are packed in a bin, they 
correspond to a matching in F and its elements.

Proposition 1 : Four vectors can be packed if and only 
if they are of the same type, either regular or dummy, 
and correspond to a matching in F and its elements.

Proof  : It is easy to check that if four vectors are of 
the same type and correspond to a matching in F and 
its elements, then they can be packed in a bin. Now, 
we prove the opposite direction. From the Remark 3, 
we only need to prove that the vectors are of the same 
type. Contrary of this, suppose that the four vectors are 
not of the same type. Let  ( ) be the total sum of reg-
ular (dummy) vectors’ small numbers δi, respectively. 
Note that  ( ) is the sum of perturbations from at 
most three regular (dummy) vectors, respectively. 
Hence, we have

 ≥


⋅

 ,   ≥



⋅

 .

Thus, +≠ 0. This is a contradiction, proving the 
proposition. ⧠
Proposition 2 : For the vectors generated in the reduc-
tion, any two x-vectors and one y-vector can be pac-
ked in a bin.

Proof : Note that the total sum of the three vectors in x 
or y coordinate is no greater than 1-ε plus three small 
perturbations. Since the total sum of any three small 
numbers is no greater than ε, the total sum of the three 
vectors is no greater than 1 both in x or y coordinate. 
Hence, the lemma follows. ⧠

The above lemma also holds for any two y-vectors 
and one x-vector.

Proposition 3 : For any packing B for the vectors in 
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the instance, we can make another feasible packing B' 
such that all the 4-bins are the same with those of B 
and the remaining ones are all 3-bins possibly except 
for the last one.

Proof  : Let U be the set of vectors not placed in 4-bins 
in B. From Remark 2, we know that each 4-bin con-
tains the same number of x- and y-vectors. Since the in-
stance has originally the same number of x- and y-vec-
tors (Remark 1), the set U has the same number of x- 
and y-vectors. We first choose two x-vectors and a 
y-vector from the set and pack them into a bin. Then, 
we make another bin using two y-vectors and an 
x-vector. By Proposition 2, we know that such two bins 
are feasible. After these steps, we still have the same 
number of x- and y-vectors. Repeating the same steps, 
we finally have no vectors remaining or at most one or 
two vectors. If there exists remaining vectors, pack 
them into a bin, which is 1- or 2-bin. Hence, the propo-
sition follows. ⧠
Theorem 1 : The problem (

 -ε∨
 -ε)-VP for 0 < ε ≤ 

1/6 is Max SNP-hard and thus does not have a APTAS, 
unless P = NP.

Proof  : We map an instance I of Max-3DM-3 to an in-
stance I' of our problem (

 -ε∨
 -ε)-VP. Note that n 

≤m ≤ 3․OPT(I). By Proposition 1, for each mat-
ching in I we can make two 4-bins, one from regular 
vectors and the other from dummy vectors and thus 
number 2OPT(I) of 4-bins in total. Since the remain-
ing vectors, not included in the 4-bins, can be packed 
into 3-bins by Proposition 3, we have

 ′    ⌈ ⌉
               ≤ 

 


               ≤ 



               ≤

 

Hence, the first condition of L-reduction is satisfied. 
Next, we consider the second condition of L-reduc-
tion. Let B be a feasible packing of (

 -ε∨
 -ε)-VP. 

By Proposition 3 we assume without loss generality 
that all the bins are 4-bin or 3-bin possibly except the 
last one. In the B, let b and   be the number of 4-bins 
with regular and dummy vectors, respectively. The 
solution t of I is obtained by selecting Tl in corre-
spondence with zl if ≥  , or  otherwise if ≤  . 
Note that

′    ⌈ ⌉
    ≥ 


 


.

Hence, we have

′  ′  ≥  

 



                
 



               ≥ 

 

               ≥ 

⋅ .

In other words, there exists a constant β such that 
|OPT(I)-π(t)|≤β․|OPT(I')-π'(B)|, which concludes that 
Max-3DM-3 L-reduces to (

 -ε∨
 -ε)-VP. 　⧠

4. Conclusions

In this paper we considered two-dimensional vector 
packing problem with large items. In particular, for (



-ε∨
 -ε)-VP for 0 < ε ≤ 1/6, we showed that it does 

not have APTAS unless P = NP. It has been an open 
question whether or not a better algorithm exists than 
the 2-absolute approximation algorithm of Kellerer 
and Kotov (2003). One of the reasons is that it is not 
easy to obtain an effective algorithm for large items, 
especially for the items with size greater than 

 -ε ei-
ther in x- or y-sizes, which includes the case where 
items have size larger than 1/3. It is still an open ques-
tion whether or not an algorithm exists with (asym-
ptotic) performance ratio less than 2 even for large 
items. Another interesting problem that should be ad-
dressed is (

∨
 )-VP (or (

∨
 )-VP), for which we 

could neither prove its hardness nor develop an opti-
mal algorithm.
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