• 제목/요약/키워드: Ground Control Point (GCP)

Search Result 86, Processing Time 0.02 seconds

Evaluation of Network-RTK Survey Accuracy for Applying to Ground Control Points Survey (지상기준점측량 적용을 위한 Network-RTK 측량 정확도 평가)

  • Kim, Kwang Bae;Lee, Chang Kyung;An, Seong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.4
    • /
    • pp.127-133
    • /
    • 2014
  • The purpose of this study is to evaluate the accuracy of Network-RTK(VRS) survey for applying to Ground Control Points(GCPs) survey required for mapping aerial photographs. Network-RTK has been serviced by National Geographic Information Institute since 2007. On the basis of the global coordinates system(ITRF2000), the coordinates of GCPs determined by Static GNSS survey with relative positioning techniques were regarded as accurate values. The coordinates of GCPs were also determined by Network-RTK survey using two kinds of receivers, and then they were converted into the global coordinates system(ITRF2000) by applying suitable geoid model and coordinate transformation. These coordinates of GCPs were compared with those from Static GNSS survey. The root mean squares error (RMSE) of coordinate differences between Network-RTK and Static GNSS was ${\pm}2.0cm$ in plane and ${\pm}7.0cm$ in height. Therefore, Network-RTK survey that enables single GNSS receiver to measure positions in short time is a practical alternative in positioning GCPs to either RTK survey that uses more than two sets of GNSS receivers or Static GNSS survey that requires longer observation time.

Application of the GPS & EDM System for 3D Orthophoto in Small Area (소규모지역에서 3차원 정사사진 구현을 위한 GPS와 EDM의 적용)

  • Choi Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.890-896
    • /
    • 2006
  • It's very difficult to acquire the accurate GCP(Ground Control Point) in the urban center and forest aerial photo because of occurring of irregular multi-path error. The purpose of this study is to apply the CPS and the EDM system for 3D orthophoto in the small areas. GCPs surveyed by accuracy triangulation from EDM after from triangulation points to a fiducial point at study area used to GPS. And I have a comment on how to use areal orthophoto for future 3D-GIS after 3D-Modelling using areal orthophoto. As the results, EDM surveying could resolve multi-path error according to GPS surveying and It is possible for using aerial orthophoto on the basis of the 3D-GIS database.

Analysis of Drone Surveying Using a Low-Cost PPK Kit (PPK Kit를 활용한 드론 측량 분석)

  • Park, Junho;Kim, Taerim
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.4
    • /
    • pp.41-52
    • /
    • 2021
  • With the popularization of drones and the ease of use of the Global Navigation Satellite System (GNSS), drone photogrammetry for terrain information has been widely used. Drone photogrammetry enables the realization of high-accuracy three-dimensional topography for the entire area with less effort and time compared to the past direct survey using GNSS or total station. From 3-D topographic data, various topographical analysis is possible. To improve the accuracy of drone photogrammetry, direct GCP surveying in the field is essential, and the numbers and reasonable positioning of GCPs are very important. In the case of beaches or tidal flats on the west coast of Korea, the numbers and location of GCPs are important factors in efficient drone photogrammetry because of the size of the area, difficulties of movement, and the risk from tides. If the RTK (Real-time kinematic) or PPK (Post-processed kinematic) method is used, the increased accuracy of the drone's location enables high-accuracy photogrammetry with a small number of GCPs. This study presents an efficient drone photogrammetry method in terms of time and economy by comparing and analyzing the results of drone photogrammetry using Non-PPK with low-cost PPK-Kit, based on the tests of various numbers and locations of GCPs in the university field including various slopes and structures like coastal terrain.

Improving Precision of the Exterior Orientation and the Pixel Position of a Multispectral Camera onboard a Drone through the Simultaneous Utilization of a High Resolution Camera (고해상도 카메라와의 동시 운영을 통한 드론 다분광카메라의 외부표정 및 영상 위치 정밀도 개선 연구)

  • Baek, Seungil;Byun, Minsu;Kim, Wonkook
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.541-548
    • /
    • 2021
  • Recently, multispectral cameras are being actively utilized in various application fields such as agriculture, forest management, coastal environment monitoring, and so on, particularly onboard UAV's. Resultant multispectral images are typically georeferenced primarily based on the onboard GPS (Global Positioning System) and IMU (Inertial Measurement Unit)or accurate positional information of the pixels, or could be integrated with ground control points that are directly measured on the ground. However, due to the high cost of establishing GCP's prior to the georeferencing or for inaccessible areas, it is often required to derive the positions without such reference information. This study aims to provide a means to improve the georeferencing performance of a multispectral camera images without involving such ground reference points, but instead with the simultaneously onboard high resolution RGB camera. The exterior orientation parameters of the drone camera are first estimated through the bundle adjustment, and compared with the reference values derived with the GCP's. The results showed that the incorporation of the images from a high resolution RGB camera greatly improved both the exterior orientation estimation and the georeferencing of the multispectral camera. Additionally, an evaluation performed on the direction estimation from a ground point to the sensor showed that inclusion of RGB images can reduce the angle errors more by one order.

Detection of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image (KOMPSAT-3 위성영상의 RPC 보정을 위한 국가 통합기준점 탐지)

  • Lee, Hyoseong;Han, Dongyeob;Seo, Doochun;Park, Byungwook;Ahn, Kiweon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.829-837
    • /
    • 2014
  • The KOMPSAT-3 can acquire panchromatic stereo image with 0.7 m spatial resolution, and provides Rational Polynomial Coefficient (RPC). In order to determine ground coordinate using the provides RPC, which include interior-exterior orientation errors, its adjustment is needed by using the Ground Control Point (GCP). Several thousands of national Unified Control Points (UCPs) are established and overall distributed in the country by the Korean National Geographic Information Institute (NGII). UCPs therefore can be easily searched and downloaded by the national-control-point-record-issues system. This paper introduced the point-extraction method and the distance-bearing method to detect of UCPs. As results, the distance-bearing method was better detected through the experiment. RPC adjustment using this method was compared with that by only one UCP and GCPs using GPS. The proposed method was more accurate than the other method in the horizontal. As demonstrated in this paper, the proposed UCPs detection method could be replaced GPS surveying for RPC adjustment.

CAS 500-1/2 Image Utilization Technology and System Development: Achievement and Contribution (국토위성정보 활용기술 및 운영시스템 개발: 성과 및 의의)

  • Yoon, Sung-Joo;Son, Jonghwan;Park, Hyeongjun;Seo, Junghoon;Lee, Yoojin;Ban, Seunghwan;Choi, Jae-Seung;Kim, Byung-Guk;Lee, Hyun jik;Lee, Kyu-sung;Kweon, Ki-Eok;Lee, Kye-Dong;Jung, Hyung-sup;Choung, Yun-Jae;Choi, Hyun;Koo, Daesung;Choi, Myungjin;Shin, Yunsoo;Choi, Jaewan;Eo, Yang-Dam;Jeong, Jong-chul;Han, Youkyung;Oh, Jaehong;Rhee, Sooahm;Chang, Eunmi;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.867-879
    • /
    • 2020
  • As the era of space technology utilization is approaching, the launch of CAS (Compact Advanced Satellite) 500-1/2 satellites is scheduled during 2021 for acquisition of high-resolution images. Accordingly, the increase of image usability and processing efficiency has been emphasized as key design concepts of the CAS 500-1/2 ground station. In this regard, "CAS 500-1/2 Image Acquisition and Utilization Technology Development" project has been carried out to develop core technologies and processing systems for CAS 500-1/2 data collecting, processing, managing and distributing. In this paper, we introduce the results of the above project. We developed an operation system to generate precision images automatically with GCP (Ground Control Point) chip DB (Database) and DEM (Digital Elevation Model) DB over the entire Korean peninsula. We also developed the system to produce ortho-rectified images indexed to 1:5,000 map grids, and hence set a foundation for ARD (Analysis Ready Data)system. In addition, we linked various application software to the operation system and systematically produce mosaic images, DSM (Digital Surface Model)/DTM (Digital Terrain Model), spatial feature thematic map, and change detection thematic map. The major contribution of the developed system and technologies includes that precision images are to be automatically generated using GCP chip DB for the first time in Korea and the various utilization product technologies incorporated into the operation system of a satellite ground station. The developed operation system has been installed on Korea Land Observation Satellite Information Center of the NGII (National Geographic Information Institute). We expect the system to contribute greatly to the center's work and provide a standard for future ground station systems of earth observation satellites.

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery (Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구)

  • Jung, Minyoung;Kang, Wonbin;Song, Ahram;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.327-343
    • /
    • 2020
  • This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.

The Study of Coastal Change Detection Ortho Aerial Photo and Hydrographic Survey: Parcels Submerged (정사항공사진과 해양조사측량을 이용한 해안선변화 탐지에 관한 연구: 포락지 중심으로)

  • Choi Chul Eung;Kim Youn Soo;Suh Yong Cheol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.2
    • /
    • pp.61-69
    • /
    • 2005
  • The coastal erosion and the look of a heap which are mainly occurred in the district along the coast are found for various forms such as the estuary closing, the estuary sand bar the development of the coast sand bar, and the modification of coastline. Recently, due to the coastal development, these transformations have been intensified. The change of coast, which has been made slow progress is required long-term study on a searching examination of the root cause and a suggestion of a counter measure. In this research, ortho aerial photos were produced to analyze volumes of topographical alternations that have been progressed fer the long run, by 10s cycle from 1940s through 1990s, to compute accurate volumes of coastline variation, through a datum point and G.C.P (Ground Control Point). Also in this study, without respect to water level, the coastline variation was analyzed by using comparatively analyzed a Idlest land map, a cadastral map. And to analyze topographical variation volumes, the tidal station's materials was used under consideration f3r tide. Finally, topographical variation volumes are comparatively analyzed through surveying and sounding and a point of fine of aviation photographing was calculated and revised. After this research, by using ortho aerial photos, We can understand efficiency of these in computing volumes of variations of coastline by analyzing quantitatively erosion and look of a heap. Besides, in the future, these will be used for information gathering of the coastline integration control system.

Generation of Digital Orthoimage using Direct Georeferencing (외부표정요소 직접결정에 의한 수치정사영상 생성)

  • Song Youn-Kyung
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.55-63
    • /
    • 2005
  • Direct Georeferencing(DG) Is based on the direct measurement of the projection centers and rotation angle of sensor through loading the GPS and INS in aircraft. The methods can offer us to acquire the exterior orientation parameters with only minimum GCPs, even the ground control process could be completely skipped. Hence, as long as securing Digital Elevation Model (DEM), it is feasible to generate digital orthophotos without performing the aerial triangulation with Ground Control Point (GCP) surveying. In this study, the DEM is automatically generated by using a image matching technique based on aerial photos and exterior orientation parameters. This is followed by producing an orthophoto from these results. Finally, accuracy analysis of the georeferencing technique for generating orthoimage indicates that RMS errors of 62cm and 76cm occurred at the X and the Y axis, respectively. This means that the results fulfill the demanding accuracy of the 1:5000 digital map. Hence, it is possible to conclude from this study that the direct georeferencing based orthoimage generation method is able to effectively digital map update.

  • PDF

The Geometric Modeling for 3D Information of X-ray Inspection (3차원 정보 제공을 위한 X-선 검색장치의 기하학적 모델링)

  • Lee, Heung-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1151-1156
    • /
    • 2013
  • In this study, to clearly establish the concept of a geometric modeling I apply for the concept of Pushbroom, limited to two-dimensional radiation Locator to provide a three-dimensional information purposes. Respect to the radiation scanner Pushbroom modeling techniques, geometric modeling method was presented introduced to extract three-dimensional information as long as the rotational component of the Gamma-Ray Linear Pushbroom Stereo System, introduced the two-dimensional and three-dimensional spatial information in the matching relation that can be induced. In addition, the pseudo-inverse matrix by using the conventional least-squares method, GCP(Ground Control Point) to demonstrate compliance by calculating the key parameters. Projection transformation matrix is calculated for obtaining three-dimensional information from two-dimensional information can be used as the primary relationship, and through the application of a radiation image matching technology will make it possible to extract three-dimensional information from two-dimensional X-ray imaging.