• Title/Summary/Keyword: Ground Control

Search Result 2,928, Processing Time 0.032 seconds

DEVELOPMENT OF THE KOMPSAT-2 SATELLITE MISSION CONTROL SYSTEM

  • Lee Byoung-Sun;Lee Sanguk;Mo Hee-Sook;Cho Sungki;Jung Won Chan;Kim Myungja;Kim In-Jun;Kim Tae-Hee;Joo Inone;Hwang Yoola;Kim Jaehoon
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.300-303
    • /
    • 2004
  • KOMPSAT-2 satellite mission operations and control system has been developed by ETRI. The system functional architecture, analysis and design, implementation, and tests are presented in this paper.

  • PDF

An intelligent semi-active isolation system based on ground motion characteristic prediction

  • Lin, Tzu-Kang;Lu, Lyan-Ywan;Hsiao, Chia-En;Lee, Dong-You
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2022
  • This study proposes an intelligent semi-active isolation system combining a variable-stiffness control device and ground motion characteristic prediction. To determine the optimal control parameter in real-time, a genetic algorithm (GA)-fuzzy control law was developed in this study. Data on various types of ground motions were collected, and the ground motion characteristics were quantified to derive a near-fault (NF) characteristic ratio by employing an on-site earthquake early warning system. On the basis of the peak ground acceleration (PGA) and the derived NF ratio, a fuzzy inference system (FIS) was developed. The control parameters were optimized using a GA. To support continuity under near-fault and far-field ground motions, the optimal control parameter was linked with the predicted PGA and NF ratio through the FIS. The GA-fuzzy law was then compared with other control laws to verify its effectiveness. The results revealed that the GA-fuzzy control law could reliably predict different ground motion characteristics for real-time control because of the high sensitivity of its control parameter to the ground motion characteristics. Even under near-fault and far-field ground motions, the GA-fuzzy control law outperformed the FPEEA control law in terms of controlling the isolation layer displacement and the superstructure acceleration.

Satellite Ground Track Display on a Digitized World Map for the KOMPSAT-2 Mission Operations

  • Lee, Byoung-Sun;Kim, Jae-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.246-249
    • /
    • 2005
  • Satellite ground track display computer program is designed and implemented for the KOMPSAT-2 mission operations. Digitized world map and detailed Korean map is realized with zoom and pan capability. The program supports real-time ground trace and off-line satellite image planning on the world map. Satellite mission timeline is also displayed with the satellite ground track for the visualized mission operations. In this paper, the satellite ground track display is described in the aspect of the functional requirements, design, and implementation.

  • PDF

CONCEPTUAL DESIGN OF MONITORING AND CONTROL SUBSYSTEM FOR GNSS GROUND STATION

  • Jeong, Seong-Kyun;Kim, In-Jun;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.389-396
    • /
    • 2007
  • The Global Navigation Satellite System (GNSS) becomes more important and is applied to various systems. Recently, the Galileo navigation system is being developed in Europe. Also, other countries like China, Japan and India are developing the global/regional navigation satellite system. As various global/regional navigation satellite systems are used, the navigation ground system gets more important for using the navigation system reasonably and efficiently. According to this trend, the technology of GNSS Ground Station (GGS) is developing in many fields. The one of purposes for this study is to develop the high precision receiver for GNSS sensor station and to provide ground infrastructure for better performance services on navigation system. In this study, we consider the configuration of GNSS Ground Station and analyze function of Monitoring and Control subsystem which is a part of GNSS Ground Station. We propose Monitoring and Control subsystem which contains the navigation software for GNSS Ground System to monitor and control equipments in GNSS Ground Station, to spread the applied field of navigation system, and to provide improved navigation information to user.

Performance Analysis of Navigation Algorithm for GNSS Ground Station

  • Jeong, Seong-Kyun;Park, Han-Earl;Lee, Jae-Eun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.3 no.2
    • /
    • pp.32-37
    • /
    • 2008
  • Global Navigation Satellite System (GNSS) is been developing in many countries. The satellite navigation system has the importance in economic and military fields. For utilizing satellite navigation system properly, the technology of GNSS Ground Station is needed. GNSS Ground Station monitors the signal of navigation satellite and analyzes navigation solution. This study deals with the navigation software for GNSS Ground Station. This paper will introduce the navigation solution algorithm for GNSS Ground Station. The navigation solution can be calculated by the code-carrier smoothing method, the Kalman-filter method, the least-square method, and the weight least square method. The performance of each navigation algorithm in this paper is presented.

  • PDF

Extraction of Ground Control Point (GCP) from SAR Image

  • Hong, S.H.;Lee, S.K.;Won, J.S.;Jung, H.S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1058-1060
    • /
    • 2003
  • A ground control point (GCP) is a point on the surface of Earth where image coord inates and map coordinates can be identified. The GCP is useful for the geometric correction of systematic and unsystematic errors usually contained in a remotely sensed data. Especially in case of synthetic aperture radar (SAR) data, it has serious geometric distortions caused by inherent side looking geometry. In addition, SAR images are usually severely corrupted by speckle noises so that it is difficult to identify ground control points. We developed a ground point extraction algorithm that has an improved capability. An application of radargrammetry to Daejon area in Korea was studied to acquire the geometric information. For the ground control point extraction algorithm, an ERS SAR data with precise Delft orbit information and rough digital elevation model (DEM) were used. We analyze the accuracy of the results from our algorithm by using digital map and GPS survey data.

  • PDF

An Experimental Study on Variable-Speed Control of an Ground-Water Circulation Pump for a Ground Source Multi-Heat Pump System (주거용 건물 지열원 멀티 히트펌프시스템의 지열순환펌프 가변유량제어에 관한 실증연구)

  • Song, Suwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.443-449
    • /
    • 2013
  • The purpose of this study is to propose an enhanced variable-speed control method of ground-water circulation pumps using inlet and outlet ground-water temperature difference and analyze its effect for the ground source multi-heat pump system installed in a single-family house. As a result, it has shown to significantly reduce the electricity use of ground-water circulation pump and improve overall system Coefficient of Performance (COP) due to the proposed variable-speed control under partial load conditions after oversized and inefficient single-speed pump retrofit.

Adaptive Sliding Mode Control based on Feedback Linearization for Quadrotor with Ground Effect

  • Kim, Young-Min;Baek, Woon-Bo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.101-110
    • /
    • 2018
  • This paper introduces feedback linearization (FL) based adaptive sliding mode control (ASMC) effective against ground effects of the quadrotor UAV. The proposed control has the capability of estimation and effective rejection of those effects by adaptive mechanism, which resulting stable attitude and positioning of the quadrotor. As output variables of quadrotor, x-y-z position and yaw angle are chosen. Dynamic extension of the quadrotor dynamics is obtained for terms of roll and pitch control input to be appeared explicitly in x-y-z dynamics, and then linear feedback control including a ground effect is designed. A sliding mode control (SMC) is designed with a class of FL including higher derivative terms, sliding surfaces for which is designed as a class of integral type of resulting closed loop dynamics. The asymptotic stability of the overall system was assured, based on Lyapunov stability methods. It was evaluated through some simulation that attitude control capability is stable under excessive estimation error for unknown ground effect and initial attitude of roll, pitch, and yaw angle of $30^{\circ}$ in all. Effectiveness of the proposed method was shown for quadrotor system with ground effects.

The development of ground and airborne control system for remotely piloted vehicle (무인항공기의 지상 및 기상 제어 시스템 개발)

  • 김영철;이윤생;김승주
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.361-366
    • /
    • 1991
  • A ground and airborne control system for remotely piloted vehicle (RPV) is described. 1) Ground control system 2) airborne control system 3) the method of measuring aircraft attitude and heading 4) autopilot 5) the method of treating emergency status 6) the method of transmitting and receiving communication data 7) the method of displaying aircraft status 8) the characteristics of the aircraft control system are discussed in some detail.

  • PDF