• Title/Summary/Keyword: Ground Conditions

Search Result 2,737, Processing Time 0.027 seconds

New Evaluation Method for The Particle Size and Morphology Via Change of Ground Particle During a Grinding Process (분쇄공정에서 변화된 입자크기 및 형상특성의 평가방법에 관한 새로운 제언)

  • Choi, Heekyu;Lee, Jehyun;Choi, Junewoo
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • New evaluation method for the particle size and morphology via change of ground particle during a grinding process was investigated. The grinding experiments were carried by a planetary ball mill. The relationship between the particle outline of the scanning electron microscopy photograph and measurement line, the measurement contact number was evaluated. The value of contact number decreased with the increase in the particle size of the ground sample, and varied with the experimental conditions. The value of contact number, which is related to the particle size of the raw sample, changed at the various experimental conditions.

Analysis of Acceleration Characteristics of a Railgun (레일건 가속특성 분석)

  • Lee, Young-Hyun;Kim, Seong-Ho;Lee, Byung-Ha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.511-518
    • /
    • 2021
  • To accelerate a launch mass with a low level of pressure as possible in a railgun, it is required to hold supplied current nearly constant during launch phase. We obtained the discharging conditions for required current shaping by modeling and analysis of circuit equations coupled to acceleration equation of the launch mass. The acceleration characteristics of the railgun in the conditions were analyzed by comparing experimental and theoretical results.

Settlement and Scour Characteristics of Artificial Reef according to Reinforced Ground (해저지반 보강에 따른 인공어초의 침하 및 세굴 특성)

  • Yun, Dae-Ho;Suh, Sung-Ho;Kim, Yun-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.186-193
    • /
    • 2016
  • Recently in Korea, a marine ranching project has continued to grow with the increasing needs of sea development. Management techniques, including settlement reduction and scour protection, have been required for constructing and maintaining the artificial reefs of this marine ranching project. The generation of settlement and scour can be influenced by ground characteristics. In this study, various laboratory tests (penetration test, two-dimensional water tank test) were performed to determine the settlement and scour characteristics of artificial reefs under various ground conditions. Three kinds of ground reinforcement were prepared: unreinforced, geogrid, and hybrid bamboo mat. Penetration test results showed that the normalized settlement ratio of ground reinforced with a hybrid bamboo mat was smaller than those of unreinforced ground and geogrid-reinforced ground. Two-dimensional water tank test results showed that the scour characteristics of ground reinforced with a geogrid were more reduced and stable than unreinforced ground. The amount of scour and ground settlement also decreased with increasing reinforced area.

Construction of Ground Effective Thermal Conductivity Database for Design of Closed-Loop Ground Heat Exchangers (밀폐형 지중열교환기 설계를 위한 지중 유효열전도도 데이터베이스 구축)

  • Choi, Jae-Ho;Sohn, Byong-Hu;Lim, Hyo-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.776-781
    • /
    • 2008
  • A ground heat exchanger in a GSHP system is an important unit that determines the thermal performance of a system and its initial cost. The Size and performance of this heat exchanger is highly dependent on the thermal properties. A proper design requires certain site-specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This paper is part of a research project aiming at constructing a database of these site-specific properties, especially ground effective thermal conductivity. The objective was to develop and evaluation method, and to provide this knowledge to design engineers. To achieve these goals, thermal response tests were conducted using a testing device at nearly 150 locations in Korea. The in-situ thermal response is the temperature development over time when a known heating load imposed, e.g. by circulating a heat carrier fluid through the test exchangers. The line-source model was then applied to the response test data because of its simplicity. From the data analysis, the range of ground effective thermal conductivity at various sites is $1.5{\sim}4.0\;W$/mK. The results also show that the ground effective thermal conductivity varies with grouting materials as well as regional geological conditions and groundwater flow.

  • PDF

Simulation of Ground Motions from Gyeongju Earthquake using Point Source Model (점지진원 모델을 이용한 경주 지진으로 인한 지반운동 생성)

  • Ha, Seong Jin;Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.537-543
    • /
    • 2016
  • In low to moderate seismic regions, there are limited earthquake ground motion data recorded from past earthquakes. In this regard, the Gyeongju earthquake (M=5.8)occurred on September 12, 2016 produces valuable information on ground motions. Ground motions were recorded at various recording stations located widely in Korean peninsula. Without actual recoded ground motions, it is impossible to make a ground motion prediction model. In this study, a point source model is constructed to accurately simulate ground motions recorded at different stations located on different soil conditions during the Gyeongju earthquake. Using the model, ground motions are generated at all grid locations of Korean peninsula. Each grid size has $0.1^{\circ}(latitude){\times}0.1^{\circ}(longitude)$. Then a contour hazard map is constructed using the peak ground acceleration of the simulated ground motions.

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

A Study on the Monitoring Methods for Energy Production in Ground Source Heat Pump System (지열원 열펌프 시스템의 에너지 생산량 모니터링 신뢰도 향상 방안 연구)

  • Kang, Shin-Hyung;Lee, Kwang Ho;Do, Sung Lok;Choi, Jong Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.2
    • /
    • pp.10-16
    • /
    • 2019
  • In this study, the present regulation of heat metering for the ground source heat pump was investigated. The ground source heat pump has been adopting the heat metering system used in the district heating system for estimating the heating and cooling energy production amount. The accuracy of the present heat metering systems for a water to water ground source heat pump is low, because the system for district heating has a relatively high temperature range comparing with the ground source heat pump operating conditions. Even though the heat amount for the building side should be measured, the heat absorption and extraction amount from or to the ground was measured for the water to air ground source heat pump due to the difficulty of estimating the air side heating and cooling capacity in the present regulation. It is highly recommended to validate the heat metering system to have reliability for the ground source heat pump and develop the system to be applicable water to air ground source heat pump.

Characterization of face stability of shield tunnel excavated in sand-clay mixed ground through transparent soil models

  • YuanHai Li;XiaoJie Tang;Shuo Yang;YanFeng Ding
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.439-451
    • /
    • 2023
  • The construction of shield tunnelling in urban sites is facing serious risks from complex and changeable underground conditions. Construction problems in the sand-clay mixed ground have been more reported in recent decades for its poor control of soil loss in tunnel face, ground settlement and supporting pressure. Since the limitations of observation methods, the conventional physical modelling experiments normally simplify the tunnelling to a plane strain situation whose results are not reliable in mixed ground cases which exhibit more complicated responses. We propose a new method for the study of the mixed ground tunnel through which mixed lays are simulated with transparent soil surrogates exhibiting different mechanical properties. An experimental framework for the transparent soil modelling of the mixed ground tunnel was established incorporated with the self-developed digital image correlation system (PhotoInfor). To understand better the response of face stability, ground deformation, settlement and supporting phenomenon to tunnelling excavation in the sand-clay mixed ground, a series of case studies were carried out comparing the results from cases subjected to different buried depths and mixed phenomenon. The results indicate that the deformation mode, settlement and supporting phenomenon vary with the mixed phenomenon and buried depth. Moreover, a stratigraphic effect exists that the ground movement around mixed face reveals a notable difference.

A Study on Field Change Case of Tunnel Concrete Lining Designs Using GLI(Ground Lining Interaction) Model (GLI(Ground-Lining Interaction)모델을 이용한 터널 콘크리트라이닝의 현장 설계변경 사례에 대한 연구)

  • Chang, Seok-Bue;Lee, Soo-Yul;Suh, Young-Ho;Yun, Ki-Hang;Park, Yeon-Jun;Kim, Su-Man
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.58-64
    • /
    • 2010
  • GLI model was verified to consider the interaction between a ground and a tunnel lining and to rationally reduce the ground load acting on the secondary lining(concrete lining) of a tunnel. In this study, the economy and the construction condition of tunnel concrete linings designed by a conventional frame model at Lot O of OO line were highly enhanced through a field design change using GLI model. For a few safe considerations, not only about 50% saving of reinforcing steel could reduce the material cost but also the wide space between bars could make it easy to pour concrete mix without voids. There was large saving effect of reinforcing steel for poor ground conditions because Terzaghi's load used in the conventional frame model produces too much high loads for those conditions.

Seismic fragility analysis of bridge response due to spatially varying ground motions

  • Kun, C.;Li, B.;Chouw, N.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.297-316
    • /
    • 2015
  • The use of fragility curves in the design of bridges is becoming common these days. In this study, experimental data have been used to develop fragility curves for the potential of girder unseating of a three-segment bridge and a bridge-abutment system including the influence of spatially varying ground motions, pounding, and abutment movement. The ground excitations were simulated based on the design spectra for different soil conditions. The Newmarket Viaduct replacement bridge in Auckland was used as the prototype bridge. These fragility curves were also applied to the 2010 Darfield and 2011 Christchurch earthquakes. The study showed that for bridges with similar characteristics as the chosen prototype and with similar fundamental frequencies, pounding could increase the probability of girder unseating by up to 35% and 30% based on the AASHTO and NZTA seating length requirements, respectively. The assumption of uniform ground excitations in many design practices, such as the NZTA requirements, could potentially be disastrous as girders might have a very good chance of unseating (as much as 53% higher chances when considering spatial variation of ground motions) even when they are designed not to. In the case of superstructures with dissimilar frequencies, the assumption of fixed abutments could significantly overestimate the girder unseating potential when pounding was ignored and underestimate the chances when pounding was considered. Bridges subjected to spatially varying ground excitations simulated based on the New Zealand design spectra for soft soil conditions with weak correlation shows the highest chances of girders falling off, of up to 65% greater than for shallow soil excitations.