• Title/Summary/Keyword: Ground Condition

Search Result 2,217, Processing Time 0.03 seconds

Monitoring & Analysis on Excavation Failure Modes by Centrifugal Model Experiment (원심모형실험에 의한 지하굴착 붕괴양상에 관한 계측 및 해석)

  • Heo, Y.;Ahn, K.K.;Lee, C.K.
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.135-142
    • /
    • 1998
  • This paper is to investigate the failure surface and modes in a soil mass by a excavation of the model ground. To study the failure surface for the excavated slope, centrifugal model tests were performed by changing the angle of the excavated slope(50, 75, $90^{\circ}$) and the ground condition($D_r$=60, 90%, dry and submerged ground). Excavation was simulated during the centrifuge tests by operating a valve that allowed the zinc chloride solvent to drain from the excavation. Results of model tests were compared with those obtained with theoretical solutions using limit equilibrium analysis method. The results of model tests show that, there is a failure to create a straight line in the low angle of excavated surface and a create a circle as the angle increases. Also, as the angle of excavated surface is increasing, the angle of the failure surface increases. The failure length in the submerged ground increases approximately 1.10~1.34 times more than that of the dry ground.

  • PDF

Application of Ground Penetrating Radar (GPR) coupled with Convolutional Neural Network (CNN) for characterizing underground conditions

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.467-474
    • /
    • 2024
  • Monitoring and managing the condition of underground utilities is crucial for ground stability. This study aims to determine whether images obtained using ground penetrating radar (GPR) accurately reflect the characteristics of buried pipelines through image analysis. The investigation focuses on pipelines made from different materials, namely concrete and steel, with concrete pipes tested under various diameters to assess detectability under differing conditions. A total of 400 images are acquired at locations with pipelines, and for comparison, an additional 100 data points are collected from areas without pipelines. The study employs GPR at frequencies of 200 MHz and 600 MHz, and image analysis is performed using machine learning-based convolutional neural network (CNN) techniques. The analysis results demonstrate high classification reliability based on the training data, especially in distinguishing between pipes of the same material but of different diameters. The findings suggest that the integration of GPR and CNN algorithms can offer satisfactory performance in exploring the ground's interior characteristics.

A Case Study on the NATM Tunnel Excavation under the Soft Soil Ground Condition by Back Analysis Method (역해석 기법에 의한 연약지반 NATM터널 굴착사례 연구)

  • JO, Hyun;PARK, Jong-In;LEE, Ki-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.71-81
    • /
    • 2000
  • For the construction of NATM tunnel, it is required a design based on the accurate soil condition from soil investigation. However, in practice, it often designs tunnels without fully understanding the condition. Especially, when soft soil comes up, or ground water breaks out suddenly on the construction, it needs to secure the stability of tunnel by appropriate reinforcing construction according to the results of measurements on field superlatively reflecting the faced situation. This report reviews the mostsuitable stability of tunnel in the construction of soft soil of tunnel by numerical analysis using FDM after re-evaluated the soil properties through back analysis using the results of measurements to simulate abruptly occurred deformation. And applying steel pipe grouting row by row on the wall and the low part of tunnel and also applying the construction method of temporary invert after excavation of the upper part of tunnel, the excavation of soft soil tunnel secured the structural stability of tunnel has been completed.

  • PDF

A study on analysis method for the prediction of changes in ground condition ahead of the tunnel face (터널 막장 전방의 지반 변화 예측을 위한 해석기법에 관한 연구)

  • Kim, Young-Sub;Kim, Chan-Dong;Jung, Yong-Chan;Lee, Jae-Sung;You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.71-83
    • /
    • 2004
  • The purpose of this study is to present an analysis method for the prediction of the changes m ground conditions. To this end, three dimensional convergence displacements are analyzed in several ways to estimate the trend of displacement changes. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak zone exists, a diagnostic trend of displacement change is observed by the 3 dimensional measurement and numerical analysis. Therefore, the change of ground condition and the existence of a weak zone ahead of tunnel face can be predicted by monitoring 3-dimensional absolute displacements during excavation, and applying the methodology (the ratio of L/C, $C/C_o$, etc.) presented in this study.

  • PDF

Prediction of Change in Ground Condition Ahead of Tunnel Face Using Three-dimensional Convergence Analysis (터널 3차원 내공변위의 해석을 통한 막장전방 지반상태변화 예측)

  • 김기선;김영섭;유광호;박연준;이대혁
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.476-485
    • /
    • 2003
  • The purpose of this study is to present an analysis method for the prediction of the change of ground conditions. To this end, three-dimensional convergence displacements is analyzed in several ways to estimate the trend of displacement change. Three-dimensional arching effect is occurred around the unsupported excavation surface including tunnel face when a tunnel is excavated in a stable rock mass. If the ground condition ahead of tunnel face changes or a weak fracture zone exists a specific trend of displacement change is known to be occurred from the results of the existing researches. The existence of a discontinuity, whose change in front of the tunnel face, can be predicted from the ratio of L/C (longitudinal displacement at crown divided by settlement at crown) etc. Therefore, the change of ground condition and the existence of a fracture zone ahead of tunnel face can be predicted by monitoring three-dimensional absolute displacements during excavation, and applying the methodology presented in this study.

Case Study of Immersed Tunnel Instrumentation Management Using Wireless System (지중무선 시스템을 이용한 침매터널 구간 계측관리 사례연구)

  • Han, Sang-Wook;Kim, Byung-Hee;Han, Byung-Won;Lee, Gye-Chun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.768-773
    • /
    • 2009
  • Measuring method being applied for off-shore works is performed by using data logger or manual measuring instrument with wiring the cable connected from the sensor up to the position where measuring is allowed.(upper part of embankment or marine structure) Measuring management by using existing measuring method may be acceptable on the condition that the ground deformation volume(vertical, horizontal) is generally minimal and the site condition is good. But loss of measuring instrument, sensor cable failure or cutting is taken place frequently due to significant change of ground behavior caused by an external force change(embankment, excavation) under very soft ground condition(N value below 0-4). In case of the marine works, in particular, loss rate of measuring instrument is highly represented due to the factors of working barge anchoring, constructional interference and natural disaster. In order to solve these problems, measuring management was performed with employing underground wireless system at the immersed tunnel site. Measuring data was obtained freely under the marine environment by using underground wireless communication and cable cutting potential by ground behavior could be reduced. Measuring cost savings and its installation convenience were maximized by way of off-shore tower installation or cabling and by minimizing constructional interference of off-shore working barge. This case of measuring management was accomplished successfully.

  • PDF

Numerical Analysis for the Effect of Ground and Groundwater Conditions on the Performance of Ground Source Heat Pump Systems (토양 및 지하수 조건이 지열공조시스템의 성능에 미치는 영향에 관한 수치 해석적 연구)

  • Nam, Yu-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.5
    • /
    • pp.321-326
    • /
    • 2011
  • Recently, ground source heat pump (GSHP) systems have been introduced in many modem buildings which use the annually stable characteristic of underground temperature as one of the renewable energy uses. However, all of GSHP systems cannot achieve high level of energy efficiency and energy-saving, because their performance significantly depends on thermal properties of soil, the condition of groundwater, building loads, etc. In this research, the effect of thermal properties of soil on the performance of GSHP systems has been estimated by a numerical simulation which is coupled with ground heat and water transfer model, ground heat exchanger model and surface heat balance model. The thermal conductivity of soil, the type of soil and the velocity of groundwater flow were used as the calculation parameter in the simulation. A numerical model with a ground heat exchanger was used in the calculation and, their effect on the system performance was estimated through the sensitivity analysis with the developed simulation tool. In the result of simulation, it founds that the faster groundwater flow and the higher heat conductivity the ground has, the more heat exchange rate the system in the site can achieve.

Limitations and improvement of the in situ measurements of ground thermal conductivity in Korea (국내 지중열전도도 측정 방법의 한계 및 개선 방향)

  • Shim, Byoung Ohan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.195.2-195.2
    • /
    • 2011
  • The borehole heat exchanger of Geothermal Heat Pump (GHP) system should be sustainable and cost effective for long term operation. To guaranty the performance of the system thermal Response Tests (TRTs) with simple recommended procedures have been applied in many countries. Korea government developed a standard TRT procedure in order to control the quality on GHP projects. In the TRT procedure interpretation method has a rule that data set has to be interpreted by the line source model(LSM). The LSM employes some assumptions that surrounding medium is homogeneous and the line source is infinite and constant heat flux, however real ground condition is unisotropic and heterogeneous, and showing regional or local ground water flows in many cases. We need to develope improved evaluation models to estimate accurate ground thermal conductivity with respect to geological and influence of ground water because current TRT standard test procedure has limitations to be applied for every locations and system. This study surveyed the uncertainty of the thermal parameters from the interpretation method considering different evaluation period. The interpretation of 208 TRT data sets represents limitations of LSM application that some obtained ground thermal conductivities are statistically unstable and convergence time of ground thermal conductivity over test period shows trends responding the length of test period. This evaluation study will be helpful to provide some effective procedure for the thermal parameter estimation and to complement current TRT standard procedure.

  • PDF

Effect of Input Soil Properties for Round Robin Test on Ground Response Analysis (지반 응답 해석 Round Robin Test의 입력 지반 물성에 따른 지반 응답 특성 영향 고찰)

  • Kim, Bong-Soo;Lee, Sei-Hyun;Choo, Yun-Wook;Park, Sung-Sik;Kim, Dong-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.305-316
    • /
    • 2007
  • Free field ground motion during earthquake is significantly affected by the local soil conditions and it is essential for the seismic design to perform the site specific ground response analysis. So, Round Robin Test (RRT) on ground response analysis was performed for three sites in Korea. A total of 12 teams presented the results of ground response analysis with used input soil properties based on own judgement. In this paper, the results of one dimensional equivalent linear analysis presented by 11 teams were compared to evaluate the effect of input soil properties on ground response analysis. Additionally, 4 influence factors on ground response analysis, that is shear wave velocity of soil layer, nonlinear dynamic deformational characteristics, bedrock depth and bedrock velocity were studied for assumed simple soil conditions.

  • PDF

The Characteristics of Thermal Diffusion With the Vertical-Closed Loop Type Geothermal Heat Exchanger (수직밀폐형 지중열교환기의 온도분포 특성)

  • Sun, Jong-Cheol;Kim, Byung-Chul;Koh, Young-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.57-65
    • /
    • 2013
  • The temperatures with the ground depth, the positions of circulation water in ground heat exchanger were measured and thermal diffusion characteristics with the distances of the direction normal to the borehole was analysed. The deeper the depth of ground, the less the influences of outdoor temperature, but below 10m of ground, there was no influences of ground temperature. When the depth of trench pipe was below the depth of 2m, there was no influence. In the ground of 10m when the distances between the pipe and the other places were above 0.5m, the variations of temperature were less than $1.6^{\circ}C$ and above 2.5m they were less than $0.1^{\circ}C$. When the distances of bore hole were above 5m, there were no. influences of the nearest ground heat exchanger.