• Title/Summary/Keyword: Ground Calcium Carbonate

Search Result 56, Processing Time 0.027 seconds

Effects of Ground Calcium Carbonate Dispersion by Sodium Polyacrylate (폴리아크릴산 소다에 의한 중질 탄산칼슘의 분산효과)

  • Ro, Yoon-Chan;Jeong, Tae-Young;Cho, Kyoung-Haeng;Roh, Seung-Ho;Nam, Ki-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.49-55
    • /
    • 1993
  • Ground Calcium Carbonate, among paper coating pigments, will influence less dispersant demand, less binder demand, increase coating solids from 58% to 70%, which means high speed coating, less shrinkage during drying, less energy consumption, more uniform coverage of fibers. The quality point of view of Ground Calcium Carbonate, brightness, particle size, Particle size distribution, hardness, impurities content are important. More important factors of Ground Calcium Carbonate which influence the paper coating process are dispersion mechanisms and their effects. The study was made to investigate the effect of Ground Calcium Carbonate dispersion by sodium salt of polyacrylate dispersant composition and dispersion condition. Basic tests such as physical, optical and chemical were perfumed, and dispersion effects were investigated by different conditions. The results showed that the type of dispersant affected the dispersion effects, and the Ground Calcium Carbonate has critical dispersant demand.

Development of Hybrid Calcium Carbonate for High Loading Paper (I) - Manufacture and Application of Hybrid Calcium Carbonate - (고충전지 제조를 위한 하이브리드 탄산칼슘 충전제의 개발 (I) - 하이브리드 탄산칼슘의 제조 및 이용 -)

  • Jung, Jae Kwon;Seo, Yung Bum
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.30-37
    • /
    • 2015
  • Needs for high ash loading in printing paper increase as green house gas (GHG) emission regulation becomes more stricter and pressure of lowering paper production cost increases. To meet the needs, a new type of filler was developed. The mixture of ground calcium carbonate (GCC) and calcium oxide was pre-floccuated with polyelectrolyte and further treated with carbon dioxide to form new calcium carbonate between GCCs. The final products were called as hybrid calcium carbonate (HCC), and its properties were compared to the GCC and the pre-flocculated GCC. Results showed increase in tensile, smoothness, opacity, and bulk for HCC.

Effect of Mixed Ratios of Ground Improvement Material using Microorganisms on the Strength of Sands (미생물을 활용한 지반개량제의 혼합비율에 따른 사질토의 강도개선 효과)

  • Park, Kyung-Ho;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • In this study, the objective of the study is to evaluate the effect of calcium carbonate powder, produced by the microbial reactions, on the strength of soft ground (sand). To analyze the cementation effects of calcium carbonate powder produced by microbial reactions on the strength of the sand, six different types of specimens (untreated, calcium carbonate, cement, carbonate+cement (1:9, 3:7, 5:5)) were made. The specimen were tested after curing (7 and 28 days). Uniaxial compressive strengths were measured on $D5cm{\times}H10cm$ specimens. Based on the test results, as both the weight ratio and the curing period increase, calcium carbonate, cement, and calcium carbonate+cement specimens showed an increase in the strength. In addition, compared with the strength of the specimen with cement, the strengths of the specimens with mixing ratios of 1:9, 3:7, and 5:5 (carbonate : cement) were found to be 93.5~95.8%, 825.%, 65.2~70.6%.

Stability of Pre-treated Fillers for High Loaded Printing Paper (고충전 인쇄용지 제조를 위한 중질 탄산칼슘 전처리 기술의 안정성에 관한 연구)

  • Seo, Yung Bum;Choi, Jin Sung;Ji, Sung Gil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • More addition of calcium carbonate in printing paper allows savings of the wood fibers and the drying energy. Pre-flocculation of GCC (ground calcium carbonate) using functional polymers was known as the best available technology to make high loaded paper until now, and it allowed less reduction of the paper essential properties such as tensile strength and smoothness at higher GCC content. However, pre-flocculated GCC became unstable in size under the continued agitation in the mill. Therefore, pre-flocculation method was modified in such a way that the in-situ calcium carbonate was formed between the GCC particles of the pre-flocculated GCC, and the resultant became more stable in size, which we named as HCC (hybrid calcium carbonate). HCC turned out to make high tensile strength and smoothness as much as the pre-flocculated GCC and gave much better size stability against stirring. Furthermore, HCC gave high bulk that pre-flocculation could not make.

Strength and Heat Deflection Temperature of Resin Compounds Prepared Using Different Size and Content of Ground Calcium Carbonate (중질 탄산칼슘의 입자 크기와 첨가량 변화에 따라 제조된 수지 조성물의 강도 및 열변형온도)

  • Lee, Yoonjoo;Heo, Seck;Kim, Younghee;Kim, Soo-Ryong;Kwon, Woo-Teck
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.359-362
    • /
    • 2016
  • Mineral filler is used for resin compounds, because it increases the stiffness and thermal stability of a resin compound, and it also cuts down the cost. Calcium carbonate, silica, magnesium oxide, and others are used as filler materials in general, and the type of filler material, the size, and content can affect the physical properties of compounds. Those factors also influence the viscosity of resin mixtures and the workability, and should be adjusted by changing the contents of the filler, which depends on the size. In this study, five kinds of ground calcium carbonate, which were different in size, were used to produce polyester compounds ; the physical properties were compared with the filler size and contents. The mechanical properties were measured by bending strength and tensile strength, and the heat deflection temperature was obtained for thermal stability.

Manufacture of Precipitated Calcium Carbonate from Pungchon Limestone (풍촌지역 석회석을 이용한 침강성탄산칼슘의 제조)

  • Lee, Jae-Jang;Park, Jong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.251-256
    • /
    • 2001
  • This research is focused on an improvement of additional value of high grade limestone. To obtain the basic data of precipitated calcium carbonate(PCC), studies of physical properties of limestone, calcination and hydration characteristics, the characteristics to manufacture quick lime, hydrated lime, ground calcium carbonate and precipitated calcium carbonate were performed. In the carbonation process, formation of rombohedral must be kept under $10^{\circ}C$ for reaction. Although the temperature of reaction of lime milk was limited under $30^{\circ}C$ for a colloidal PCC manufacture, over $50^{\circ}C$ for spindle type PCC. The recommended reaction conditions for colloidal PCC are $20^{\circ}C$ of reaction temperature, 4% of $Ca(OH)_2$ concentration, 1000rpm of stirring rate and 200ml/min of $CO_2$ gas flow rate.

  • PDF

Effect of Microbial Treatment Methods on Biogrout (미생물 처리 방법이 바이오그라우트에 미치는 영향)

  • Kim, Daehyeon;Park, Kyungho;Kim, Hochul;Lee, Yonghee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.51-57
    • /
    • 2012
  • The purpose of study is to understand the possibility of biogrout of soil induced by bacteria. Microbial Calcium Carbonate Precipitation(MCP) has been analysed using the microorganism Bacillus Pasteurii. In order to understand the biogrout of soft ground treated with microbial calcium carbonate precipitation, four types of specimens(sterilization soil, non-sterilization soil, reaction solution and microorganism solution with pre-treatment mix and reaction solution and microorganism solution with post-treatment mix) were made. Scanning Electron Microscope(SEM), EDX and X-ray diffraction(XRD) analyses were performed on the soft ground specimens. On the basis of the preliminary results, it appears that microbial treatment methods using calcium carbonate precipitation may be possible to improve property of biogrout.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

Applicability of biocementation for organic soil and its effect on permeability

  • Sidik, Waleed S.;Canakci, Hanifi;Kilic, Ibrahim H.;Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.649-663
    • /
    • 2014
  • In past few years, the use of bacterial calcium carbonate precipitation (biocementation) has become popular as a ground improvement technique for sandy soil. However, this technique was not applied to organic soil. This study focused on bacterial calcium carbonate precipitation and its effect on permeability in organic soil. A special injection system was prepared for inducing bacterial solution to the samples. The bacterial solution supplied to the samples by gravity for 4 days in specific molds designed for this work. Calcite precipitation was observed by monitoring pH value and measuring amount of calcium carbonate. Change in the permeability was measured before and after biocementation. The test results showed that the pH values indicates that the treatment medium is appropriate for calcite precipitation, and amount of precipitated calcium carbonate in organic soil increased about 20% from untreated one. It was also found that the biocementation can be considered as an effective method for reducing permeability of organic soil. The results were supported by Scanning electron microscopy (SEM) analysis and energy-dispersive x-ray (EDX) analysis.

A Study on the Properties of Microbial Cementation Soil for Engineering Applicability (미생물 고결토의 공학적 특성 연구)

  • Oh, Jong-Shin;Hwang, Soung-Won;Kang, Hee-Bog;Kang, Keon-Soo;Kim, Jong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1332-1343
    • /
    • 2008
  • The purpose of this study was to investigate the feasibility of using sedimentation calcium carbonate production based on microorganism activities in the strength manifestation of various soil conditions including ground. For analysis and comparison of microbial cementation soil's strength, unconfined compression test was executed by each content of soil(S), water(W), microorganism(B), microorganism and deposit (BF), microorganism, admixture and deposit(BCF) at specimen. The result, the strength of SB(soil+microorganism) and SBF(soil+microorganism+deposit) increased about 8%, 15% than SW(soil+water). Also, initial strength increased. But the strength of SBC(soil+microorganism+admixture) and SBCF(soil+microorganism+deposit+admixture) increased about 71%, 115% than SW(soil+water). The results of the SEM analysis, leading to the formation of an adhesive substance layers at the surface and resulting in firm particle configuration. The XRD examination of the sediment resulting from the reaction between the microorganism and the deposit control agent confirmed the presence of a type of calcium carbonate ($CaCo_3$) vaterite, which affects soil strength formation, as well as sodium silicate, silicides and so forth. This indicates that microorganism plays an important role in the production of carbonate ($CaCo_3$), sodium silicate and silicides. It affects to revelation of ground strength.

  • PDF