• Title/Summary/Keyword: Ground Angle Coefficient

Search Result 65, Processing Time 0.026 seconds

Optimized design of walking device based on Theo Jansen Mechanism for securing stability and speed (Theo Jansen Mechanism 기반 보행 기구의 최적 설계를 통한 구동의 안정성 및 속도 확보)

  • Kim, KyungHoon;Kim, SeungYeon
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.513-515
    • /
    • 2016
  • There are various walking devices based on Theo Jansen mechanism. And these systems controlled by complicate equations. So we decided to optimize the design of walking device with two points of view. The device is required to ensure stability while maintaining the high speed. To simplify the control system, we applied trigonometric ratio with ideal Jansen trajectory. As a result, we were able to draw the connection between height of barrier and Ground Length (GL). Also we could change traveling distance and Ground Angle Coefficient (GAC) by shifting the position of the joints. Through controlling these parameter, we can analyze stability and speed of the device. Ultimately, we develop the device that can walk more efficiently by the optimization process.

  • PDF

Walking robot Optimum Design by Jansen's mechanism (Jansen's Mechanism 기반의 보행로봇 최적설계)

  • Kim, Taehyun;Seo, Hankook;Lee, Seohyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.443-454
    • /
    • 2016
  • This study focus to make 8 legs robot based on Jansen's mechanism. In the process of making, we found GL(Ground length),GAC(Ground Angle Coefficient) and the height difference of tract and compare Several models with M.Sketch to find link's Length ratio Optimised simple walking and crossing of obstacles. In the process, our team Analyzed the difference ideal tract (Jansen holy number model's track) contrived by Jansen and our final model tract. As a result, we found optimal link's length ratio to over the obstacles and some features that our model differ from Jansen holy number model. It means that optimal link's length ratio depends on certain circumstances, perfect length ratio is nonexistent.

  • PDF

Experimental Study of Flowfields Over a NACA0012 Airfoil with Ground Effects (지면효과를 받는 NACA0012 익형주위 유동장의 실험적 연구)

  • Cho, J.-H.;Kim, Youn J.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.2 s.11
    • /
    • pp.29-34
    • /
    • 2001
  • Experimental and numerical studies are conducted to investigate the flow field over a NACA0012 airfoil with ground effects. In experiment, the ground is simulated by a moving belt system. From the comparison between the experimental and numerical results, it is concluded that the velocity gradient over the ground plane causes the increments in pressure coefficient on lower surface of the airfoil and reduces the suction peak at the leading edge.

  • PDF

A Research about optimum design of the walking robot using Jansen mechanism (얀센 메커니즘을 이용한 보행로봇의 최적설계에 관한 연구)

  • YONGZHU, JIN;Chi, Hyoung Geun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.384-388
    • /
    • 2016
  • This paper proposed a m.Sketch to search the optimal link lengths for a legged walking robot. In order to apply the m.Sketch for the proposed, set the design parameters of the constraints and use the m.Skecth to get optimal GL(Groud Length) and GAC(Ground Angle Coefficient). The legged robot designed based on four-bar linkage theory and Theo Jansen mechanism. The stride length of the legged walking robot was defined based on the proposed kinematic analysis. Use the Edison Design m.Sketch simulate and find the optimal link length having the best of the Ground Length (GL) and Ground Angle Coefficient(GAC). And use these length implemented the Theo Jansen mechanism both in Science box parts and acrylic. In addition to the further expansion of the legs to reach the goaltranslating heavy objects or person.

  • PDF

Theo jansen mechanism 로봇 보행능력향상을 위한 다리 최적화

  • Park, Seong-Muk;Ha, Seon-Il
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.608-614
    • /
    • 2017
  • 얀센메커니즘을 활용한 보행로봇의 단점인 저속을 개선 하기위한 연구이다. 그 예시로 라인트레이싱 속도를 높이기 위한 다리의 최적설계를 수행하였다. 이를 위해 EDISON에서 제공하는 프로그램을 사용하여 Ground angle coefficient와 Ground length를 더한 목적함수를 최대값으로 설계하였고 보행능력이 증가하였다.

  • PDF

Side Force Modeling of Landing Gear and Ground Directional Controller Design for UAV (무인기용 착륙장치 측력 모델링 및 지상활주 제어기 설계)

  • Cho, Sung-Bong;Ahn, Jong-Min;Hur, Gi-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.997-1003
    • /
    • 2014
  • This paper describes modeling process to obtain precise landing gear model which is necessary to design a control law for ground auto-taxi, auto take-off/landing of UAV. In this paper, landing gear side force modeling is studied to complete a landing gear model of UAV. Side force modeling is performed by calculating cornering angle including steering angle. And ground directional controller is designed by using nose wheel steering and rudder steering at the same time to control course angle error. Accuracy of landing gear side force modeling and ground directional controller is proved by comparing of auto-taxi test results with simulation results.

얀센 메커니즘 기반 라인트레이싱 보행 로봇 최적 설계

  • Cha, Hye-Min;Gong, Hyeon-Bae;Lee, Su-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.516-526
    • /
    • 2017
  • 본 논문은 테오얀센 메커니즘을 적용한 보행 로봇 형상 및 라인 트레이싱을 위한 센서의 최적 설계를 수행한다. 소프트웨어를 활용하여 보행 로봇의 운동학적 해석(보행 곡선 추적, Ground Length, Ground Angle Coefficient), 최적화 및 상세 설계, 센서 추적 관련 시뮬레이션을 수행하고 분석하여 속도가 빠르며 안정적으로 주행하는 테오얀센 메커니즘 모델을 제안한다.

  • PDF

Pullout Resistance Increase in Soil-Nailing with Pressurized Grouting: Verification of Theoretical Solution (압력식 쏘일네일링의 인발저항력 증가: 이론적 검증)

  • Seo, Hyung-Joon;Park, Sung-Won;Jeong, Kyeong-Han;Choi, Hang-Seok;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.419-433
    • /
    • 2009
  • Pressure grouting is a common technique in geotechnical engineering to increase the stiffness and strength of the ground mass and to fill boreholes or void space in a tunnel lining and so on. Recently, the pressure grouting has been applied to a soil-nailing system which is widely used to improve slope stability. The soil-nailing design has been empirically performed in most geotechnical applications because the interaction between pressurized grouting paste and the adjacent ground mass is complicated and difficult to analyze. The purpose of this study is to analyze the increase of pullout resistance induced by pressurized grouting with the aid of performing laboratory model tests and field tests. In this paper, two main causes of pullout resistance increases induced by pressurized grouting were verified: the increase of residual stress; and the increase of coefficient of pullout friction. From the laboratory tests, it was found that residual stress in borehole increases by pressurized grouting and dilatancy angle could be estimated by cavity expansion theory using the measured wall displacements. From the field test results, the pullout resistance of soil-nailing with pressurized grouting was found to be 10% larger than that of soil-nailing with gravitational grouting, mainly caused by mean normal stress increase and dilatancy effect. So, the pullout resistance could be estimated by considering these two effects. The radial displacement increases with dilatancy angle increase and the dilatancy angle decreases with injection pressure increase. The measured pullout resistance obtained from field tests is in good agreement with the estimated one from the cavity expansion theory.

  • PDF

Relationship between RADARSAT backscatter coefficient and rice growth

  • Hong, Suk-Young;Hong, Sang-Hoon;Rim, Sang-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.468-473
    • /
    • 1999
  • This study was carried out to assess the use of RADARSAT data which is C-band with HH polarization for the rice growth monitoring in Korea. Nine time-series data were taken by shallow incidence angle (standard beam mode 5 or 6) during rice growing season. And then, backscatter coefficient ($\sigma$$^{\circ}$) were extracted by calibration process for comparing with rice growth parameters such as plant height leaf area index(LAI), and fresh and dry biomass. Field experimental data concerned with rice growth were collected 8 times for the ground truth at the study area, Tangjin, Chungnam, Korea. At the maximum vegetative stage of rice, backscatter coefficients were the highest at the flooded rice field ranging from -4.4dB~-3.1dB. The temporal variation of backscatter coefficient($\sigma$$^{\circ}$) in rice field was significant in this study Backscatter coefficient ($\sigma$$^{\circ}$) of rice field was a little bit lower again after heading stage. This results show RADARSTA data is promising for rice monitoring.

  • PDF

Prediction and Evaluation of the Road Traffic Noise according to the Conditions of Road-side Building Using RLS-90 and CRTN Model (RLS-90 및 CRTN 모델에 의한 도로 인접건물에서의 도로소음 영향 예측 및 고찰)

  • Lee, Jang-Wook;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.425-432
    • /
    • 2009
  • Recently, reduction of road traffic noise in residential buildings has become one of the most important subjects. To reduce the road traffic noise, noise impact assessment by the road traffic prediction model is required before building construction. For reasonable road traffic noise prediction, it is required to analysis of various factors in road traffic prediction models. This paper was studied the road traffic noise propagation factors such as distance from road to building, receiver height, alignment angle of building and reflection coefficient of the building facade by two calculation models, RLS-90 and CRTN. The result showed that noise reduction was generally higher at bottom stories by ground absorption effect. The reflection coefficient of the building facade was affect of additional sound pressure level by facade reflecting. And alignment angle of building at $90^{\circ}$ was performed effective noise reduction better than $0^{\circ}$.