• Title/Summary/Keyword: Gross Errors

Search Result 44, Processing Time 0.023 seconds

When Evaluated Using CT Imaging Phantoms AAPM Phantom Studies on the Quantitative Analysis Method (AAPM Phantom을 이용한 CT 팬텀 영상 평가 시 정량적 분석 방법에 관한 연구)

  • Kim, Young-Su;Ye, Soo-Young;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.592-600
    • /
    • 2016
  • AAPM CT performance for special medical equipment quality control checks using a standard phantom for evaluation, using the evaluator's subjective assessment as to minimize errors due computerized assessment program to evaluate their usefulness. Phantom for evaluation AAPM CT Performance Phantom: was used, the default shooting conditions are the same as quality control checks. And, we use IMAGE J to evaluate the program. Quantitative evaluation with CT attenuation coefficient and the noise measurement, the uniformity measurement, the slice thickness measurement, contrast resolution of the measurement, a phantom image of the spatial resolution determined by the evaluation program is evaluated as self-extracting the result after processing the image, CT uniformity measurement for the evaluation that was smaller and the standard deviation of a video image processing more uniform slice thickness measurements it is difficult to evaluate due to the difference of the ratio of the measured value of the phantom image. Contrast resolution was measured cylindrical diameter 6th evaluate the shape of a circle obtained a mean value and a standard deviation of diameters, the spatial resolution of the group of source, including acceptance criteria automatically extracted result as a result of both the number of the extracted circularIt appeared. Evaluate the source image and video processing, and video to qualitative evaluation by gross were processed video image is shown excellent results. If the evaluators in order to minimize the errors of subjective judgment based on the results of the above should be done with a quantitative evaluation and qualitative evaluation utilizes a computerized assessment program is considered that further evaluation be made more efficient.

Image registration using outlier removal and triangulation-based local transformation (이상치 제거와 삼각망 기반의 지역 변환을 이용한 영상 등록)

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.787-795
    • /
    • 2014
  • This paper presents an image registration using Triangulation-based Local Transformation (TLT) applied to the remaining matched points after elimination of the matched points with gross error. The corners extracted using geometric mean-based corner detector are matched using Pearson's correlation coefficient and then accepted as initial matched points only when they satisfy the Left-Right Consistency (LRC) check. We finally accept the remaining matched points whose RANdom SAmple Consensus (RANSAC)-based global transformation (RGT) errors are smaller than a predefined outlier threshold. After Delaunay triangulated irregular networks (TINs) are created using the final matched points on reference and sensed images, respectively, affine transformation is applied to every corresponding triangle and then all the inner pixels of the triangles on the sensed image are transformed to the reference image coordinate. The proposed algorithm was tested using KOMPSAT-2 images and the results showed higher image registration accuracy than the RANSAC-based global transformation.

Development of Low-Cost Data Acquisition Method for Close-range Digital Photogrammetric System (근거리 수치사진측량시스템을 위한 저가격 자료획득방법의 개발)

  • Park, Hong-Gi
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.2 s.14
    • /
    • pp.143-153
    • /
    • 1999
  • GIS have become easier to use and very popular. In recent year digital photogrammetric systems ire becoming cost-effective tools to build and update GIS databases. In close-range photogrammetry for the acquisition of geospatial data, the bundle adjustment needs both initial approximate values and control points to solve the exterior orientation parameters. This paper gives a review of applied and potential algorithms for estimating Initial approximate values before the bundle adjustment, develope new algorithms for determine the exterior orientation parameters, and gives a cost-effective methods for close-range digital photogrammetric system Modifications of existing DLT algorithm were made in this study for providing an efficient, economic, and more accurate photogrammetric data reduction technique. These modifications include robust approaches for automatic detection and elimination of all lands of gross errors in the measurement data, and incorporation of GPS to reduce the number of control points necessary for a DLT solution. Also, this paper derives a new method for space resection from a monocular image. A major advantage of proposed method is that the solution can be uniquely and analytically determined without initial approximate values of exterior orientation parameters and without iterative computation.

  • PDF

The Measurements of Data Accuracy and Error Detection in DEM using GRASS and Arc/Info (GRASS와 Arc/Info를 이용한 DEM 데이터의 정확도와 에러 측정)

  • Cho, Sung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.1 no.1
    • /
    • pp.3-7
    • /
    • 1998
  • The issue of data accuracy brings a different perspective to the issue of GIS modeling, calls into a question the usefulness of data models such as DEM. Accuracy can be determined by randomly checking positional and attribute accuracy within a GIS data layer. With the increasing availability of DEM and the software capable of processing them, it is worthwhile to call attention for data accuracy and error analysis as GIS application depends on the priori established spatial data. The purpose of this paper was to investigate methods for data accuracy measurement and error detection methodology with two types of DEM's: 1 to 24,000 and 1 to 250,000 DEM released by U.S. Geological Survey. Another emphasis was given to the development of methodology for processing DEM's to create Arc/Info and GRASS layers. Data accuracy analysis with DEM was applied to a 250 sq.km area and an error was detected at a scale of 1:24,000 DEM. There were two possible reasons for this error: gross errors and blunders.

Development of Tomographic Scan Method for Industrial Plants (산업공정반응기의 감마선 전산 단층촬영기술 개발)

  • Kim, Jong-Bum;Jung, Sung-Hee;Moon, Jin-Ho;Kwon, Taek-Yong;Cho, Gyu-Seong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.1
    • /
    • pp.20-30
    • /
    • 2010
  • In this paper, a new tomographic scan method with fixed installed detectors and rotating source from gamma projector was presented to diagnose the industrial plants which were impossible to be examined by conventional tomographic systems. Weight matrix calculation method which was suitable for volumetric detector and statistical iterative reconstruction method were applied for reconstructing the simulation and experimental data. Monte Carlo simulations had been performed for two kinds of phantoms. Lab scale experiment with a same condition as one of phantoms, had been carried out. Simulation results showed that reconstruction from photopeak counting measurement gave the better results than from the gross counting measurement although photopeak counting measurement had large statistical errors. Experimental data showed the similar result as Monte Carlo simulation. Those results appeared to be promising for industrial tomographic applications, especially for petrochemical industries.

The Diagnostic Accuracy of Endoscopic Biopsy for Gastric Dysplasia

  • Lee, Sung-Bae;Kang, Hye-Yun;Kim, Kwang-Il;Ahn, Dae-Ho
    • Journal of Gastric Cancer
    • /
    • v.10 no.4
    • /
    • pp.175-181
    • /
    • 2010
  • Purpose: There is controversy over the treatment for low grade dysplasia, while resection is recommended for high grade dysplasia. But the concordance of the grade of dysplasia between pre- and post-resection is low because of sampling errors with endoscopic biopsy. We attempted to establish a clearer direction for the treatment of dysplasia by clarifying the discrepancy between the pre- and postresection diagnoses. Materials and Methods: We performed a retrospective review of 126 patients who had undergone resection with the diagnosis of dysplasia on biopsy at Bundang CHA Hospital from 1999 to 2009. Results: Seventy patients were diagnosed with low grade dysplasia and 56 patients were diagnosed with high grade dysplasia. Among the 33 patients who received gastrectomy with lymph node dissec-tion, 30 patients were revealed to have invasive cancers and 4 patients showed lymph node metastasis. Discordance between the diagnoses from biopsy and resection occurred in 55 patients (44%). There was no correlation on the comparative analysis between the size, location or gross type of lesion and the grade of dysplasia. Conclusions: The rate of discordance between the diagnoses of endoscopic biopsy and the post resection pathologic report was as high as 44%. Endoscopic mucosal resection was not sufficient for some patients who were diagnosed with dysplasia on biopsy due to the presence of lymph node metastasis. It is necessary to be prudent when determining the follow-up and treatment based solely on the result of the biopsy.

A Study on the Verification Method of Ships' Fuel Oil Consumption by using AIS

  • Yang, Jinyoung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.269-277
    • /
    • 2019
  • Since 2020, according to the International Convention for the Prevention of Pollution from Ships (MARPOL) amended in 2016, each Administration shall transfer the annual fuel consumption of its registered ships of 5,000 gross tonnage and above to the International Maritime Organization (IMO) after verifying them. The Administration needs stacks of materials, which must not be manipulated by ship companies, including the Engine log book and also bears an administrative burden to verify them by May every year. This study considers using the Automatic Identification System (AIS), mandatory navigational equipment, as an objective and efficient tool among several verification methods. Calculating fuel consumption using a ship's speed in AIS information based on the theory of a relationship between ship speed and fuel consumption was reported in several examples of relevant literature. After pre-filtering by excluding AIS records which had speed errors from the raw data of five domestic cargo vessels, fuel consumptions calculated using Excel software were compared to actual bunker consumptions presented by ship companies. The former consumptions ranged from 96 to 123 percent of the actual bunker consumptions. The difference between two consumptions could be narrowed to within 20 percent if the fuel consumptions for boilers were deducted from the actual bunker consumption. Although further study should be carried out for more accurate calculation methods depending on the burning efficiency of the engine, the propulsion efficiency of the ship, displacement and sea conditions, this method of calculating annual fuel consumption according to the difference between two consumptions is considered to be one of the most useful tools to verify bunker consumption.

Accuracy Assessment of Feature Collection Method with Unmanned Aerial Vehicle Images Using Stereo Plotting Program StereoCAD (수치도화 프로그램 StereoCAD를 이용한 무인 항공영상의 묘사 정확도 평가)

  • Lee, Jae One;Kim, Doo Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.257-264
    • /
    • 2020
  • Vectorization is currently the main method in feature collection (extraction) during digital mapping using UAV-Photogrammetry. However, this method is time consuming and prone to gross elevation errors when extracted from a DSM (Digital Surface Model), because three-dimensional feature coordinates are vectorized separately: plane information from an orthophoto and height from a DSM. Consequently, the demand for stereo plotting method capable of acquiring three- dimensional spatial information simultaneously is increasing. However, this method requires an expensive equipment, a Digital Photogrammetry Workstation (DPW), and the technology itself is still incomplete. In this paper, we evaluated the accuracy of low-cost stereo plotting system, Menci's StereoCAD, by analyzing its three-dimensional spatial information acquisition. Images were taken with a FC 6310 camera mounted on a Phantom4 pro at a 90 m altitude with a Ground Sample Distance (GSD) of 3 cm. The accuracy analysis was performed by comparing differences in coordinates between the results from the ground survey and the stereo plotting at check points, and also at the corner points by layers. The results showed that the Root Mean Square Error (RMSE) at check points was 0.048 m for horizontal and 0.078 m for vertical coordinates, respectively, and for different layers, it ranged from 0.104 m to 0.127 m for horizontal and 0.086 m to 0.092 m for vertical coordinates, respectively. In conclusion, the results showed 1: 1,000 digital topographic map can be generated using a stereo plotting system with UAV images.

Effectiveness of the Respiratory Gating System for Stereotectic Radiosurgery of Lung Cancer (Lung Cancer의 Stereotactic Radiosurgery시 Respiratory Gating system의 유용성에 대한 연구)

  • Song Heung Kwon;Kim Min Su;Yang Oh Nam;Park Cheol Su;Kwon Kyung Tae;Kim Jeong Man
    • 대한방사선치료학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.13-17
    • /
    • 2005
  • Introduction : For stereotactic radiosurgery (SRS) of a tumor in the region whose movement due to respiration is significant, like Lung lower lobe, the gated therapy, which delivers radiation dose to the selected respiratory phases when tumor motion is small, was peformed using the Respiratory gating system and its clinical effectiveness was evaluated. Methode and Materials : For two SRS patients with a tumor in Lung lower lobe, a marker block (infrared reflector) was attached on the abdomen. While patient' respiratory cycle was monitored with Real-time Position Management (RPM, Varian, USA), 4D CT was performed (10 phases per a cycle). Phases in which tumor motion did not change rapidly were decided as treatment phases. The treatment volume was contoured on the CT images for selected treatment phases using maximum intensity projection (MIP) method. In order to verify setup reproducibility and positional variation, 4D CT was repeated. Result : Gross tumor volume (GTV) showed maximum movement in superior-inferior direction. For patient $\#$1, motion of GTV was reduced to 2.6 mm in treatment phases ($30\%\~60\%$), while that was 9.4 mm in full phases ($0\%\~90\%$) and for patient $\#$2, it was reduced to 2.3 mm in treatment phases ($30\%\~70\%$), while it was 11.7 mm in full phases ($0\%\~90\%$). When comparing two sets of CT images, setup errors in all the directions were within 3 mm. Conclusion : Since tumor motion was reduced less than 5 mm, the Respiratory gating system for SRS of Lung lower lobe is useful.

  • PDF

Automatic Extraction of Buildings using Aerial Photo and Airborne LIDAR Data (항공사진과 항공레이저 데이터를 이용한 건물 자동추출)

  • 조우석;이영진;좌윤석
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.307-317
    • /
    • 2003
  • This paper presents an algorithm that automatically extracts buildings among many different features on the earth surface by fusing LIDAR data with panchromatic aerial images. The proposed algorithm consists of three stages such as point level process, polygon level process, parameter space level process. At the first stage, we eliminate gross errors and apply a local maxima filter to detect building candidate points from the raw laser scanning data. After then, a grouping procedure is performed for segmenting raw LIDAR data and the segmented LIDAR data is polygonized by the encasing polygon algorithm developed in the research. At the second stage, we eliminate non-building polygons using several constraints such as area and circularity. At the last stage, all the polygons generated at the second stage are projected onto the aerial stereo images through collinearity condition equations. Finally, we fuse the projected encasing polygons with edges detected by image processing for refining the building segments. The experimental results showed that the RMSEs of building corners in X, Y and Z were 8.1cm, 24.7cm, 35.9cm, respectively.