• 제목/요약/키워드: Grooves

검색결과 572건 처리시간 0.023초

스퀴즈 효과를 고려한 사판식 피스톤 펌프 홀더의 그루브 유무에 따른 부하특성에 대한 연구 (A Study on the Load Characteristics of a Swash Plate Piston Pump Holder (Cradle) with Grooves Considering the Squeeze Effect)

  • 주경진;설상석;김용길;김수태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제17권1호
    • /
    • pp.21-26
    • /
    • 2020
  • The load characteristics of a piston pump holder due to the squeeze effect are influenced by the surface shape and gap thickness of the holder (cradle). Therefore, the pressure distribution and the load capacity of the piston pump holder due to the squeeze effect are studied by using the CFD software and the surface shape and gap thickness of the piston pump holder are considered. In order to verify the accuracy of numerical results, the load capacities of a circular plate holder are numerically studied, and the accuracy of numerical results is verified by comparing with the theoretical results. Also, the pressure distribution and load capacity of the rectangular plate holder of a piston pump are obtained by using the CFD software. The results show that the load capacity of the square plate holder with grooves is slightly higher at a low gap thickness, but the effects of the number and arrangement of grooves on the load capacity of the holder are weak. We conclude that the load capacity and the maximum pressure are slightly affected due to the existence of grooves on the holder surface, and the fluid storing effect of the holder surface grooves during the operation is likely to prevent the dry-sticking phenomenon.

그루브 위치가 리니어 압축기용 피스톤과 실린더의 윤활특성에 미치는 영향 (Influence of Groove Location on Lubrication Characteristics of the Piston and Cylinder in a Linear Compressor)

  • 전우주;손상익;이혁;김정우;김경웅
    • Tribology and Lubricants
    • /
    • 제32권1호
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper hydrodynamic lubrication analysis is carried out to investigate the effects of groove location on the lubrication performance of a piston and cylinder system in a linear compressor. The rectangle shaped grooves having a constant groove depth and width are applied on the lubrication area of the piston. The Universal Reynolds equation is used to calculate the oil film pressure, and the Elrod algorithm with the finite different method is used to solve the governing equation. The JFO boundary condition is applied to predict cavitation regions. Transient analysis for different locations of the grooves on the piston is carried out using the typical operating condition of the linear compressor in order to estimate the variations of frictional power losses and minimum film thicknesses. When the grooves are applied on the lubrication area, both the frictional power loss and the minimum film thickness decrease. The frictional power loss can be reduced effectively, while maintaining a minimum film thickness to enable the piston operation without direct contact with the cylinder surface, by means of choosing a proper location of the grooves. The optimum location of the grooves to improve a lubrication performance depends on the operation condition or the system requirements specification.

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • 대한치과보철학회지
    • /
    • 제46권3호
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

Micro-computed tomographic evaluation of the flow and filling ability of endodontic materials using different test models

  • Torres, Fernanda Ferrari Esteves;Guerreiro-Tanomaru, Juliane Maria;Chavez-Andrade, Gisselle Moraima;Pinto, Jader Camilo;Berbert, Fabio Luiz Camargo Villela;Tanomaru-Filho, Mario
    • Restorative Dentistry and Endodontics
    • /
    • 제45권2호
    • /
    • pp.11.1-11.9
    • /
    • 2020
  • Objectives: This study compared the flow and filling of several retrograde filling materials using new different test models. Materials and Methods: Glass plates were manufactured with a central cavity and 4 grooves in the horizontal and vertical directions. Grooves with the dimensions used in the previous study (1 × 1 × 2 mm; length, width, and height respectively) were compared with grooves measuring 1 × 1 × 1 and 1 × 2 × 1 mm. Biodentine, intermediate restorative material (IRM), and mineral trioxide aggregate (MTA) were evaluated. Each material was placed in the central cavity, and then another glass plate and a metal weight were placed over the cement. The glass plate/material set was scanned using micro-computed tomography. Flow was calculated by linear measurements in the grooves. Central filling was calculated in the central cavity (㎣) and lateral filling was measured up to 2 mm from the central cavity. Results: Biodentine presented the least flow and better filling than IRM when evaluated in the 1 × 1 × 2 model. In a comparison of the test models, MTA had the most flow in the 1 × 1 × 2 model. All materials had lower lateral filling when the 1 × 1 × 2 model was used. Conclusions: Flow and filling were affected by the size of the test models. Higher grooves and materials with greater flow resulted in lower filling capacity. The test model measuring 1 × 1 × 2 mm showed a better ability to differentiate among the materials.

나선코일의 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics of Helical Coiled Tube)

  • 박종운;조동현
    • 수산해양교육연구
    • /
    • 제16권2호
    • /
    • pp.257-270
    • /
    • 2004
  • The two-phase closed thermosyphon is a heat transfer device capable of transfer large quantities of heat from a source to a sink by taking advantage of the high heat transfer rates associated with the evaporation and condensation of a working fluid within the device. A study was carried out with the performance of the heat transfer of the thermosyphon having 50, 60, 70, 80, 90 internal micro grooves in which boiling and condensation occur. A plain thermosyphon having the same inner and outer diameter as the grooved thermosyphon is also tested for comparison. Water, methanol and ethanol have been used as the working fluids. The liquid filling as the ratio of working fluid volume to total volume of thermosyphon, the inclination angle, micro grooves and operating temperature have been used as the experimental parameters. The heat flux and the boiling and the condensation heat transfer coefficient and overall heat transfer coefficient at the condenser and evaporator zone are estimated from the experimental results. The experimental results have been assessed and compared with existing correlations. Imura's and Kusuda's correlation for boiling showed in good agreement with experimental results within ${\pm}20$% in plain thermosyphon. The maximum heat transfer rate was obtained when the liquid fill ratio was about 25%. The high heat transfer coefficient was found between 25o and 30o of inclination angle for water and between 20o and 25o for methanol and ethanol. The relatively high rates of heat transfer have been achieved in the thermosyphon with internal micro grooves. The micro grooved thermosyphon having 60 grooves shows the best heat transfer coefficient in both condensation and boiling. The maximum enhancement (i.e. the ratio of the heat transfer coefficients of the micro grooved thermosyphon to plain thermosyphon) is 2.5 for condensation and 2.3 for boiling.

Nanoscale Processing on Silicon by Tribochemical Reaction

  • Kim, J.;Miyake, S.;Suzuki, K.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.67-68
    • /
    • 2002
  • The properties and mechanism of silicon protuberance and groove processing by diamond tip sliding using atomic force microscope (AFM) in atmosphere were studied. To control the height of protuberance and the depth of groove, the processed height and depth depended on load and diamond tip radius were evaluated. Nanoprotuberances and grooves were fabricated on a silicon surface by approximately 100-nm-radius diamond tip sliding using an atomic force microscope in atmosphere. To clarify the mechanical and chemical properties of these parts processed, changes in the protuberance and groove profiles due to additional diamond tip sliding and potassium hydroxide (KOH) solution etching were evaluated. Processed protuberances were negligibly removed, and processed grooves were easily removed by additional diamond tip sliding. The KOH solution selectively etched the unprocessed silicon area. while the protuberances, grooves and flat surfaces processed by diamond tip sliding were negligibly etched. Three-dimensional nanofabrication is performed in this study by utilizing these mechanic-chemically processed parts as protective etching mask for KOH solution etching.

  • PDF

네모난 금속홈에 의한 TM 평면파 산란의 해석적 해 (Analytic solution of TE plane-wave scattering from rectangular grooves)

  • 조용희
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.175-178
    • /
    • 2005
  • 중첩 T블록 방법을 이용하여 네모난 금속 홈에 평면파가 입사되는 경우의 해석적인 산란해를 구한다. 여러 개의 금속 홈이 있는 경우에도 각 영역을 세부 영역으로 나누어 수치효율을 증대시킨다. 최종 산란해가 빠른 적분식을 가진 간단한 닫힌 해로 표시된다.

  • PDF

케이싱 그루브가 존재하는 축류압축기의 성능특성 연구 (A Study on Performance Characteristics of an Axial Compressor with the Casing Groove)

  • 최광진;김진혁;김광용
    • 한국유체기계학회 논문집
    • /
    • 제13권2호
    • /
    • pp.24-29
    • /
    • 2010
  • This paper presents a study on the performance of NASA Rotor 37 with the casing grooves based on three-dimensional numerical analysis. Reynolds-averaged Navier-Stokes equations are solved on a hexahedral grid with the shear stress transport model as a turbulence closure model. The governing equations are discretized by a finite volume method. The validation of the numerical results is performed through experimental data for the total pressure ratio and the adiabatic efficiency. The investigation for an axial compressor with a smooth casing and the casing grooves is carried out to compare the performance parameters, for example, surge margin and efficiency, etc. The surge margin is improved in the case of the casing grooves while remarkable improvement of the efficiency is not produced. The result shows that the casing groove is beneficial to expand the operating range of NASA Rotor 37.

표면 요철을 가지는 탄소 섬유/에폭시 복합재료의 마찰 및 마모 특성 (Tribological Behaviors of Carbon-Epoxy Composite with surface grooves)

  • 김성수;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.180-184
    • /
    • 2004
  • The tribological behavior of carbon epoxy composites whose surfaces have many small grooves of $100\mu m$ width was experimentally investigated with respect to the sliding direction against groove orientation, surface pressure (P) and velocity (V). The wear mechanism of the composites was observed to calculate the wear volume with respect to the friction coefficient using scanning electron microscopic (SEM). Experimental results show that the abrasive wear is dominant wear mechanism for the grooved composite surface and the friction and wear are greatly reduced when the sliding direction is parallel to the axis of groove because abrasive particles are removed through the grooves effectively.

  • PDF

다공성 친바이오 나노섬유 극초단 레이저 가공특성 연구 (Porous Bio-degradable Nano-fiber Machining by Femtosecond Laser)

  • 최해운
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.339-345
    • /
    • 2012
  • Electrospun meshed poly-caprolactone PCL was patterned by femtosecond laser with linear grooves. As parametric variables, focus spot size, pulse energy, and scanning speed were varied to determine the affects on groove size and the characteristics of the electrospun fiber at the edges of these grooves. The femtosecond laser was seen to be an effective means for flexibly structuring the surface of ES PCL scaffolds and the width of the ablated grooves was well controlled by laser energy and focus spot size. The ablation threshold was measured to be $14.9J/cm^2$ which is a little higher than other polymers. These affects were attributed to optical multiple reflections inside nano-fibers. By the laser-induced plasma at higher pulse energies, some melting of fibers was observed.