• Title/Summary/Keyword: Grooved surface

Search Result 96, Processing Time 0.047 seconds

Experimental study on improving bamboo concrete bond strength

  • Mali, Pankaj R.;Datta, Debarati
    • Advances in concrete construction
    • /
    • v.7 no.3
    • /
    • pp.191-201
    • /
    • 2019
  • Bamboo concrete bond behaviour is investigated through pullout test in this work. The bamboo strip to be used as reinforcement inside concrete is first treated with chemical adhesive to make the bamboo surface impermeable. Various surface coatings are explored to understand their water repellant properties. The chemical action at the bamboo concrete interface is studied through different chemical coatings, sand blasting, and steel wire wrapping treatment. Whereas mechanical action at the bamboo concrete interface is studied by developing mechanical interlock. The result of pullout tests revealed a unique combination of surface treatment and grooved bamboo profile. This combination of surface treatment and a grooved bamboo profile together enhances the strength of bond. Performance of a newly developed grooved bamboo strip is verified against equivalent plain rectangular bamboo strip. The test results show that the proposed grooved bamboo reinforcement, when treated, shows highest bond strength compared to treated plain, untreated plain and untreated grooved bamboo reinforcement. Also, it is observed that bond strength is majorly influenced by the type of surface treatment, size and spacing of groove. The changes in bamboo-concrete bond behavior are observed during the experimentation.

Friction Property of Angle and Width Effect for Micro-grooved Crosshatch Pattern under Lubricated Sliding Contact (Micro-scale Grooved Crosshatch Pattern의 각도 및 폭에 따른 실험적 미끄럼마찰특성)

  • Chae, Young-Hun;Kim, Seock-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.110-116
    • /
    • 2011
  • The current study investigated the friction property of angle and width effect for micro-scale grooved crosshatch pattern on SKD11 steel surface against bearing steel using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of a hatched-angle and a width of groove on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. So It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction. Also, it is play an important a width of groove to be improved the friction property. I was found that friction property has a relationship between a width and an angle for micro-grooved pattern.

Effect of Friction Property for Angles of Micro-scale Crosshatch Grooved Surface Pattern under Sliding Lubricated Contact (마이크로 Crosshatch 그루우브 표면패턴의 각도에 따른 미끄럼마찰특성)

  • Chae Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.165-166
    • /
    • 2006
  • Surface pattern of tribological applications is an attractive technology of engineered surface. Therefore, friction reduction is considered to be necessary for improved efficiency of machines. This study investigated the effect of friction property fur angles of micro-scale crosshatch grooved surface pattern on bearing steel flat mated with pin-on-disk. We obtain sample which can be fabricated by photolithography process. We discuss friction property depend on an angle of cross-hatch grooved pattern. We can verify the lubrication mechanism as a Stribeck curve, which has a relationship between the friction coefficient and a dimensionless parameter under the lubrication condition. It was found that the friction coefficient was related to angle of crosshatch on surface, even when surface pattern was the same density.

  • PDF

Effects of Grooved Surface with Nano-ridges on Silicon Substrate on Anisotropic Wettability (실리콘 기판 위에 제작된 나노 크기의 구조물을 가진 그루브 표면이 이방성 젖음에 미치는 영향)

  • Lee, Dong-Ki;Cho, Younghak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.544-550
    • /
    • 2013
  • A grooved surface with anisotropic wettability was fabricated on a silicon substrate using photolithography, reactive ion etching, and a KOH etching process. The contact angles (CAs) of water droplets were measured and compared with the theoretical values in the Cassie state and Wenzel state. The experimental results showed that the contact area between a water droplet and a solid surface was important to determine the wettability of the water. The specimens with native oxide layers presented CAs ranging from $71.6^{\circ}$ to $86.4^{\circ}$. The droplets on the specimens with a native oxide layer could be in the Cassie state because they had relatively smooth surfaces. However, the CAs of the specimens with thick oxide layers ranged from $33.4^{\circ}$ to $59.1^{\circ}$. This indicated that the surface roughness for a specimen with a relatively thick oxide layer was higher, and the water droplet was in the Wenzel state. From the CA measurement results, it was observed that the wetting on the grooved surface was anisotropic for all of the specimens.

Analysis of Herringbone Grooved Journal Bearing Using Generalized Coordinate Transformation (일반좌표계 변환을 이용한 헤링본 그루브 베어링의 해석)

  • 박상신;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.317-324
    • /
    • 1999
  • The present work is an attempt to calculate the steady state pressure and perturbed pressure of herringbone grooved journal bearings. A generalized coordinate system is introduced to handle the complex bearing geometry. The coordinates are fitted to the groove boundary and the Reynold's equation is transformed to be fitted to this coordinates system using the Gauss divergence theorem. This method makes it possible to deal with an arbitrary configuration of a lubricated surface. The characteristics of finite herringbone grooved journal are well calculated using this method.

  • PDF

Sliding Friction Property of Angle Effect for Crosshatch Micro-grooved Pattern under Lubricated (마이크로 크기를 가지는 빗살무늬 그루우브 패턴의 빗살각도변화에 대한 실험적 마찰특성)

  • Kim, Seock-Sam;Chae, Youn-Ghun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.94-99
    • /
    • 2011
  • Micro-scale surface pattern has an benefit of tribological application under lubricated sliding contact. Therefore, a special pattern, that has to reduce the coulomb friction under contact, is considered to be necessary for improved efficiency of machines. The current study investigated the friction property of angle effect for micro-scale grooved crosshatch pattern on bearing steel surface using pin-on-disk type. The samples fabricated by photolithography process and then these are carry out the electrochemical etching process. We discuss the friction property due to the influence of hatched-angle on contact surface. We could be explained the lubrication mechanism for a Stribeck curve. It was found that the friction coefficient depend on an angle of the crosshatch on contact surface. It was thus verified that micro-scale crosshatch grooved pattern could affect the friction reduction.

Discharge Characteristics of AC-PDPs with a grooved front dielectric layer

  • Jeong, Jin-Hee;Lim, Jong-Lae;Kim, Oe-Dong;Choi, Kwang-Yeol;Yoo, Eun-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1266-1268
    • /
    • 2005
  • The influence of the grooved dielectric layer on discharge and luminous characteristics has been investigated for various depths of the groove to achieve a high luminance efficiency AC-PDP operated at a lower voltage. We use the voltagethreshold curve technique and address delay jitters to explain the discharge characteristics. It shows that the surface discharge voltage rely on the depth of the grooved dielectric layer. Vertical discharge voltage remains almost the same as the groove depth increases. The influence of the grooved dielectric layer on discharge and luminous characteristics has been investigated for various depths of the groove to achieve a high luminance efficiency AC-PDP operated at a lower voltage. We use the voltagethreshold curve technique and address delay jitters to explain the discharge characteristics. It shows that the surface discharge voltage rely on the depth of the grooved dielectric layer. Vertical discharge voltage remains almost the same as the groove depth increases.

  • PDF

The Removal Of Voids In The Grooved Interfacial Region Of Silicon Structures Obtained With Direct Bonding Technique (홈구조 실리콘 접합 경계면에서의 Void 제거를 위한 실리콘 직접접합 방법)

  • Kim, Sang-Cheol;Kim, Eun-Dong;Kim, Nam-Kyun;Bahna, Wook;Soo, Gil-Soo;Kim, Hyung-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.310-313
    • /
    • 2002
  • Structures obtained with a direct boning of two FZ silicon wafers joined in such a way that a smooth surface of one wafer was attached to the grooved surface of the other were studied. A square net of grooves was made with a conventional photo lithography process. After high temperature annealing the appearance of voids and the rearrangement of structural defects were observed with X-ray diffraction topography techniques. It was shown that the formation of void free grooved boundaries was feasible. In the cases when particulate contamination was prevented, the voids appeared in the grooved structures could be eliminated with annealing. Since it was found that the flattening was accompanied with plastic deformation, this deformation was suggested to be intensively involved in the process of void removal. A model was proposed explaining the interaction between the structural defects resulted in "a dissolution" of cavities. The described processes may occur in grooved as well as in smooth structures, but there are the former that allow to manage air traps and undesirable excess of dislocation density. Grooves can be paths for air leave. According to the established mechanisms, if not outdone, the dislocations form local defect arrangements at the grooves permitting the substantial reduction in defect density over the remainder of the interfacial area.

  • PDF