• 제목/요약/키워드: Groove Design

검색결과 263건 처리시간 0.023초

자기베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명 (Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter)

  • 김근주;이종원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.381-387
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using AMB as an exciter is proposed to identify the dynamic characteristics of a short SFD with a central groove. As an exciter, the AMB represents a mechatronic device to levitate and position the test journal without any mechanical contact, to generate relative motions of the journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with different clearance, which is one of the most important design parameters, in order to investigate its effect on the dynamic characteristics and the performance of SFDs. Damping and inertia coefficients of the SFD that are experimentally identified are compared with the analytical results to demonstrate the effectiveness of the analysis. It is also shown that AMB is an ideal device for tests of SFDs.

  • PDF

습식 DCT의 드래그 토크 저감을 위한 클러치 패드 유로 설계 (A Study on the Wet Clutch Pattern Design for the Drag Torque Reduction in Wet DCT System)

  • 조정희;한준열;김우정;장시열
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.71-78
    • /
    • 2017
  • The drag torque in the wet clutch system of a dual clutch transmission system is investigated because it is relatively high, up to 10 of the total output torque of the engine, even when the clutch is in the disengagement state with zero torque transfer. Drag torque results from the shear resistance of the DCTF between the friction pad and separator plate. To reduce the drag torque for ensuring fuel economy, the groove pattern of the wet clutch friction pad is designed to have a high flow rate through the pattern groove. In this study, four types of groove patterns on the friction pad are designed. The volume fraction of the DCTF (VOF) and hydrodynamic pressure developments in the gap between the friction pad and separator plate are computed to correlate with the computation of the drag torque. From the computational results, it is found that a high VOF and hydrodynamics increase the drag torque resulting from the shear resistance of the DCTF. Therefore, a patterned groove design should be used for increasing the flow rate to have more air parts in the gap to reduce the drag torque. In this study, ANSYS FLUENT is used to solve the flow analysis.

듀얼 반응표면법을 이용한 V-그루브 GMA 용접공정 최적화에 관한 연구 (A Study on the Optimization for a V-groove GMA Welding Process Using a Dual Response Method)

  • 박형진;안승호;강문진;이세헌
    • Journal of Welding and Joining
    • /
    • 제26권2호
    • /
    • pp.85-91
    • /
    • 2008
  • In general, the quality of a welding process tends to vary with depending on the work environment or external disturbances. Hence, in order to achieve the desirable quality of welding, we should have the optimal welding condition that is not significantly affected by these changes in the environment or external disturbances. In this study, we used a dual response surface method in consideration of both the mean output variables and the standard deviation in order to optimize the V-groove arc welding process. The input variables for GMA welding process with the dual response surface are welding voltage, welding current and welding speed. The output variables are the welding quality function using the shape factor of bead geometry. First, we performed welding experiment on the interested area according to the central composite design. From the results obtained, we derived the regression model on the mean and standard deviation between the input and output variables of the welding process and then obtained the dual response surface. Finally, using the grid search method, we obtained the input variables that minimize the object function which led to the optimal V-groove arc welding process.

표면요철 매입형 FRP봉과 CFRP시트를 복합 보강한 철근콘크리트 보의 구조성능 평가 (Evaluation of Structural Performance of Reinforced Concrete Beams using Hybrid Retrofitting with Groove and Embedding FRP Rod and CFRP Sheet)

  • 하기주;하영주
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권4호
    • /
    • pp.41-49
    • /
    • 2014
  • 본 연구에서는 기존 철근콘크리트 건축물의 구조성능 개선을 위하여 표면요철 매입형 FRP봉과 CFRP시트를 사용한 철근콘크리트 보의 구조성능을 평가하기 위하여 실험을 수행하였다. 표면요철 매입형 FRP봉의 사용량, CFRP시트 보강 유무에 따라 총 7개의 실험체를 제작하고 실험을 수행하여 구조성능을 평가하였으며, 본 연구의 실험결과를 근거로 다음과 같은 결론을 얻었다. 표면요철 매입형 FRP봉 보강 실험체 NER 시리즈의 경우, 표준실험체 NBS와 비교하여 12~46% 내력이 증가하였고, 표면요철 매입형 FRP봉과 CFRP시트를 복합 보강한 실험체 NERL 시리즈는 표준실험체 NBS보다 최대내력이 22~77% 증가하였다. 그리고 표면요철 매입형 FRP봉으로 보강된 실험체 NER 시리즈는 부착슬립, 피복분리 형태로 파괴되었으나, 표면요철 매입형 FRP봉과 CFRP시트을 복합 보강한 실험체 NERL 시리즈는 CFRP시트의 연속보강에 따른 콘크리트 구속효과 및 모재와 표면요철 매입형 FRP봉의 부착강도 증가로 인하여 부착슬립의 형태로 파괴되었다.

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • 제23권3호
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

광분배를 위한 Y-branch 제작과 광파이버와의 결합특성에 관한 연구 (A study on the fabrication of Y-branch for optical power distribution and its coupling properties with optical fiber)

  • 김상덕;박수봉;윤중현;이재규;김종빈
    • 한국통신학회논문지
    • /
    • 제21권12호
    • /
    • pp.3277-3285
    • /
    • 1996
  • In this paper, w designed an opical power distribution device for application to an optical switching and an optical subscriber loop. We fabricated PSG thin film by LPCVD. Based on the measured index of fabricted thin film, rib-type waveguide was transformed to two-dimension by the effective index method and we simulated dispersion property to find asingle-mode condition. We found that the optimum design parameters of rib-type waveguide are:cladding layer of 3.mu.m, core layer of 3.mu.m, buffer layer of 10.mu.m, and core width of 4.mu.m. Each side of the guiding region was etched down to 4.mu.m to shape the core. We used these optimum parameters of the rib-type waveguide with branching angle of 0.5.deg. and simulted the Y-branch waveguide by the BPM simulation. Numerical loss in branching area was claculated to be 0.1581dB and equal to the total loss of the Y-branch. The loss of the fabricated Y-branch waveguide on PSG film ws 1.6dB at .lambda.=1.3.mu.m before annealing but was 1.2dB after annealing at 1000.deg. C for 10 minutes. Consequently, the loss of branching area from 3000.mu.m to 6000.mu.m in the z-direction was 0.8dB, and single-mode propagation was confirmed by measuring the near field pattern. For coupling the fabricated Y-branch waveguide with an optical fiber, we fabricated V-groove which was used as the upholder of optical fiber. An etching angle was 54.deg. and the width and depth of guiding groove was 150.mu.m, 70.mu.m, respectively. The optical fiber is inserted onto V-groove. Both the Y-branch and V-groove were connected through the index matching oil. Coupling loss after connecting Y-branch and the optical fiber on V-groove was 0.34dB and that after injecting index mateching oil was 0.14dB.

  • PDF

PREDICTION AND CONTROL OF ANGULAR DISTORTION IN THICK WELDMENTS

  • Kim, Sang-Il;Kang, Joong-Kyoo;Han, Yong-Sub
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.700-705
    • /
    • 2002
  • The welding distortion of a hull structure in the shipbuilding industry is inevitable at each assembly stage. The geometric inaccuracy caused by the distortion tends to preclude the introduction of automation and mechanization and needs the additional man-hours for the adjusting work at the following assembly stage. To overcome this problem, a distortion control method should be applied. For this purpose, it is necessary to develop an accurate prediction method which can explicitly account for the influence of various factors on the welding distortion. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thicknesses as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

  • PDF

후판 구조의 각변형 예측 및 제어에 관한 연구 (A Study on the Prediction and Control of Angular Distortion in Thick Weldments)

  • 허주호;김상일
    • Journal of Welding and Joining
    • /
    • 제21권5호
    • /
    • pp.518-524
    • /
    • 2003
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding, residual stress relaxation and fairing. With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

후판 구조의 각변형 예측 및 제어에 관한 연구 (A Study on the Prediction and Control of Angular Distortion in Thick Weldments)

  • 김상일
    • 한국해양공학회지
    • /
    • 제22권6호
    • /
    • pp.100-105
    • /
    • 2008
  • The block assembly of ship consists of a series of heat processes such as cutting, bending, welding residual stress relaxation and fairing With the fast development of computers, the thermal elasto-plastic analysis method has become a versatile tool for practical applications in the ship production. If numerical analysis is proved to be an advantageous tool to predict the residual deformation due to various heat processes, the optimum methods which can remove the welding distortion can be presented at each assembly stage, which will result in great progress in improving the accuracy of block assembly. In order to minimize the weld-induced angular distortion in thick weldments, this paper proposes the optimum groove design for various plate thickness as the distortion control method. The validity of this method has been substantiated by a number of numerical simulations and experiments.

고압용 ACGT 시일의 접촉거동 특성에 대한 유한요소 해석 (on Contact Behaviour Characters of ACGT Seal for High pressure using Finite Element Analysis)

  • 최동열;김성원;김청균
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2001년도 제34회 추계학술대회 개최
    • /
    • pp.350-355
    • /
    • 2001
  • Minimum clearance between the piston seal groove of a piston and cylinder bore to ensure against extrusion of the piston seal and leakage of working fluids is an important design parameter for a seal designer in hydraulic cylinder application. Contact force, critical pressure at which extrusion occurs, leakage rate, fluid film thickness and friction force have been analyzed for some design parameter such as clearance between cylinder wall piston, depth of rectangular groove and pressure of sealed hydraulic fluid. In this paper, we analyze displacement and stress of ACGT seal by finite element analysis to understand Contact Behaviour Characters

  • PDF