• Title/Summary/Keyword: Gripping force

Search Result 59, Processing Time 0.021 seconds

Implementation and experiment of bilateral force control for a telemanipulator (원격조작기의 양방향 힘제어의 구현과 실험)

  • 천자홍;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.838-843
    • /
    • 1991
  • A telemanipulator that reflects grasping force of the slave gripper to the human operator was implemented in order for manipulation to be more delicate and safe. An industrial robot gripper was used as the slave manipulator. The master manipulator was constructed to make it easy for a human operator to direct the slave and to feel the reflected gripping force. Reflected force was generated by the servomotor of the master. The force signal and position signals of the master and the slave was used to generate driving force signal. Basically position-position type control was used. Miner force feedback is added to improve the performance of the system. Implemented system was tested by colliding two fingers of the slave manipulator, and here switching was used to archive more fast and easy manipulation.

  • PDF

Implementation of a Piezoresistive MEMS Cantilever for Nanoscale Force Measurement in Micro/Nano Robotic Applications

  • Kim, Deok-Ho;Kim, Byungkyu;Park, Jong-Oh
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.789-797
    • /
    • 2004
  • The nanoscale sensing and manipulation have become a challenging issue in micro/nano-robotic applications. In particular, a feedback sensor-based manipulation is necessary for realizing an efficient and reliable handling of particles under uncertain environment in a micro/nano scale. This paper presents a piezoresistive MEMS cantilever for nanoscale force measurement in micro robotics. A piezoresistive MEMS cantilever enables sensing of gripping and contact forces in nanonewton resolution by measuring changes in the stress-induced electrical resistances. The calibration of a piezoresistive MEMS cantilever is experimentally carried out. In addition, as part of the work on nanomanipulation with a piezoresistive MEMS cantilever, the analysis on the interaction forces between a tip and a material, and the associated manipulation strategies are investigated. Experiments and simulations show that a piezoresistive MEMS cantilever integrated into a micro robotic system can be effectively used in nanoscale force measurements and a sensor-based manipulation.

A study on Precise Grasping Control of End-Effector for Parts Assembling and Handling (부품조립 및 핸들링을 위한 말단효과장치의 정밀 그리핑 제어에 관한 연구)

  • Ha, Un-Tae;Sung, Ki-Won;Kang, Eun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.173-180
    • /
    • 2015
  • In this paper, we propose a new precise control technology of robotic gripper for assembling and handling of part. When a robot manipulator interacts mechanically with its environment to perform tasks such as assembly or edge-finishing, the end-effector is thereby constrained by the environment. Therefore grasping force control is very important, since it increases safety due to monitoring of contact force. A comparison of various force control architecture is reported. Different force control methods can often be configured to achieve similar results for a given task, and the choice of control algorithm depends strongly on the application or on the characteristics of a particular robot. In the research, the adjustable gripping force can be controlled and improved the accuracy using the artificial intelligence techniques.

Design of a Robot's Hand with Two 3-Axis Force Sensor for Grasping an Unknown Object

  • Kim, Gab-Soon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.3
    • /
    • pp.12-19
    • /
    • 2003
  • This paper describes the design of a robot's hand with two fingers for stably grasping an unknown object, and the development of a 3-axis force sensor for which is necessary to constructing the robot's fingers. In order to safely grasp an unknown object using the robot's fingers, they should measure the forces in the gripping and in the gravity directions, and control the measured forces. The 3-axis force sensor should be used for accurately measuring the weight of an unknown object in the gravity direction. Thus, in this paper, the robot's hand with two fingers for stably grasping an unknown object is designed, and the 3-axis force sensor is newly modeled and fabricated using several parallel-plate beams.

Design of Two-axis Force Sensor for Robot's Finger

  • Kim, Gob-Soon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.66-70
    • /
    • 2001
  • This paper describes the design of a two-axis force sensor for robots finger. In detects the x-direction force Fx and y-direction force Fy simultaneously. In order to safely grasp an unknown object using the robots fingers, they should detect the force or gripping direction and the force of gravity direction, and perform the force control using the forces detected. Therefore, the robots hand should be made by the robots finger with tow-axis force sensor that can detect the x-direction force and y-direction force si-multaneously. Thus, in this paper, the two-axis force sensor for robots finger is designed using several parallel-plate beams. The equations to calculate the strain of the beams according to the force in order to design the sensing element of the force sensor are derived and these equations are used to design the aize of two-axis force sensor sensing element. The reliability of the derive equa-tions is verified buy performing a finite element analysis of the sensing element. The strain obtained through this process is compared to that obtained through the theory analysis and a characteristics test of the fabricated sensor. It reveals that the rated strains calculated from the derive equations make a good agreement with the results from the Finite Element Method analysis and from the character-istic test.

  • PDF

Development of a 6-axis Robot's Finger Force/Moment Sensor for Stably Grasping an Unknown Object (미지물체를 안전하게 잡기 위한 6축 로봇손가락 힘/모멘트센서의 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.105-113
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for stably grasping an unknown object. In order to safely grasp an unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. and the result shows that interference errors of the developed sensor are less than 3%. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it. The fabricated gripper could grasp an unknown object stably. Thus, the developed 6-axis robot's finger force/moment sensor may be used for robot's gripper.

Development of a 6-axis robot's finger force/moment sensor for making a robot's gripper (로봇의 그리퍼 제작을 위한 6 축 로봇손가락 힘/모멘트센서의 개발)

  • Kim, Gab-Soon;Lee, Hun-Doo;Park, In-Chul;Son, Young-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.758-763
    • /
    • 2003
  • This paper describes the development of a 6-axis robot's finger force/moment sensor, which measures forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously, for making a robot's gripper. In order to safely grasp and unknown object using the robot's gripper, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured forces. Thus, the robot's gripper should be composed of 6-axis robot's finger force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the 6-axis robot's finger force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test of made sensor was performed. Also, Robot's gripper with the 6-axis robot's finger force/moment sensor for the characteristic test of force control was manufactured, and the characteristic test for grasping an unknown object was performed using it.

  • PDF

Development of a Small 6-axis Force/Moment Sensor for Robot′s Finger (로봇 손가락용 소형 6축 힘/모멘트센서 개발)

  • 김갑순
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-58
    • /
    • 2004
  • This paper describes the development of a small 6-axis force/moment sensor for robot's finger, which measures farces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In order to safely grasp an unknown object using the robot's gripper, and accurately perceive the position of it in the gripper, it should measure the force in the gripping direction, the force in the gravity direction and the moments each direction, and perform the force control using the measured forces and moments. Also, it should detect the moments Mx (x-direction moment), My and Mz to accurately perceive the position of the object in the grippers. Thus, the robot's gripper should be composed of 6-axis force/moment sensor that can measure forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously. In this paper, the small 6-axis force/moment sensor for measuring forces Fx, Fy, Fz, and moments Mx, My, Mz simultaneously was newly modeled using several parallel-plate beams, designed, and fabricated. The characteristic test for the developed sensor was performed, and the result shows that intereference errors of the developed sensor are less than 4.23%. Thus, the developed small 6-axis force/moment sensor may be used a robot's gripper.

Force holding control of a finger using piezoelectric actuators

  • Jiang, Z.W.;Chonan, S.;Koseki, M;Chung, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.202-207
    • /
    • 1993
  • A theoretical and experimental study is presented for the force holding control of a miniature robotic ringer which is driven by a pair of piezoelectric unimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilever with a tactile force sensor at the tip and the mate of the finger is a solid beam supposed with sufficient stiffness. Further, the force sensor is modeled by a one-degree-of-freedom, mass-spring system and the output of sensor is then described by the sensor stiffness multiplied by the relative displacement. The problem investigated in this paper is that two typical holding tasks of the human finger are picked up and applied to the robotic finger. One is the work holding a stationary object with a prescribed, time-varying force and the other one is to keep the contacted force constant even if the object is in motion. The simple PID feedback control scheme is used to control the minute gripping force of order 0.01 Newton. It is shown both experimentally and theoretically that the artificial finger with the piezoelectric actuator works well in the minute force holding of the tiny object.

  • PDF

Robotic Assembly Using Configuration and Force/Torque Information of Tactile Sensor System (접촉센서의 형상과 힘/토크 정보를 이용한 로봇조립)

  • 강이석;김근묵;윤지섭;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2315-2327
    • /
    • 1992
  • A robot assembly method which uses configuration and force/torque information of tactile sensor system and performs chamferless peg-in-hole tasks is suggested and experimentally studied. When the robot gripes the peg with random orientation, the realignment of the peg to the hole center line is successfully performed with the gripping configuration information of the tactile sensor and the inverse kinematics of the robot. The force/torque information of the tactile sensor makes it possible to control the contacting force between mating parts during hole search stage. The suggested algorithm employs a hybrid position/force control and the experiments show that the algorithm accomplishes well peg-in-hole tasks with permissible small contacting force. The chamferless peg-in-hole tasks with smaller clearance than the robot repeatibility can be excuted without any loss or deformation of mating parts. This study the possibility of precise and chamferless parts mating by robot and tactile sensor system.