• 제목/요약/키워드: Grinding zone

검색결과 33건 처리시간 0.03초

냉각 공기장치에 의한 환경 친화 연삭 연구 (A Study on Environment- Friendly Grinding by Using Cold Air)

  • 김남경;이동호;성낙창;송지복
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.145-151
    • /
    • 1998
  • In this study, the experimental and analytic investigation with cold air system has been performed for improving the working environment of the conventional grinding fluid. Very simple cold air system was developed which could replace by the conventional grinding fluid system. The identification of heat of grinding Bone is very important for precision grinding. The experimental data was analysed to investigate the heat which was transferred to the workpiece. It was found that 45∼55% of the total energy for dry grinding, 22∼28% for wet grinding, and 32∼35% for cold air system are conducted to the workpiece in grinding with cubic boron nitride wheel. Cubic boron nitride wheel could reduce the residual stress and thermal demage comparing with aluminium oxide wheel, because cubic boron nitride wheel has very high extreme thermal conductivity.

  • PDF

연삭력 변화량이 공작물의 형상오차에 미치는 영향 (Effect of Change of Grinding Force on Geometric Error)

  • 지용주;이상진;박후명;오상록;하만경
    • 한국기계가공학회지
    • /
    • 제3권2호
    • /
    • pp.10-17
    • /
    • 2004
  • A real depth of cut in deformed zone has larger than an ideal depth of cut. So the heat generated during grinding operation makes the deformation of a workpiece surface as convex farm. Consequently the workpiece surface remains a geometric error as concave form after cooling In this study, the grinding force and the geometric error were examined in surface grinding. Through magnitude and mode of geometric error were evaluated according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error In addition, the relationship between the geometric error and the grinding force was examined. Due to least square regression, It was possible to predict the geometric error by using the grinding force.

  • PDF

연삭력을 이용한 공작물의 형상오차 예측 (Geometric Error Prediction of Ground Surface by Using Grinding Force)

  • 하만경;지용주;곽재섭
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.9-16
    • /
    • 2004
  • Because a generated heat during grinding operation makes a serious deformation on a ground surface as a convex form, a real depth of cut in deformed zone has larger than an ideal depth of cut. Consequently, the ground surface has a geometric error as a concave form after cooling the workpiece. In this study, the force and the geometric error of surface grinding were examined. From evaluating magnitude and mode of the geometric error according to grinding conditions, an optimal grinding condition was proposed to minimize the geometric error. In addiction the relationship between the geometric error and the grinding force was found out. Due to least square regression it was able to predict the geometric error by using the grinding force.

유연성 디스크 연삭가공 평면가공구간에 대한 연구 (A Study on the Flat Surface Zone of the Flexible Disk Grinding System)

  • 유송민
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2007
  • Inherent dynamic interaction between flexible disk and workpiece creates partially non-flat surface profile. A flat zone was defined using minimum depth of engagement. Several key parameters were defined to explain the characteristics of the zone. Process conditions including disk rotation speed, initial depth of cut and feed speed were varied to produce product profile database. Correlation between key factors was examined to find the characteristic dependencies. Trends of key parameters were displayed and explained. Higher flat zone ratio was observed for lower depth of cut and higher disk rotation speed. Ratio of minimum depth of cut against target depth of cut increased for higher feed speed and disk rotation speed but was insensitive to the depth of cut variation. The process transition was visualized by continuously displaying instantaneous orientation of the deflected disk and the location of key parameters were clearly marked for comparison.

고능률 고속연삭에서 열원 모델에 관한 연구 (A Study on Heat Source Model to High Efficiency Speed Grinding)

  • 김남경
    • 한국공작기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.1-6
    • /
    • 2001
  • An analytical thermal model of HESG(higt efficiency speed grinding) is presented, in which the heat flux to workpiece in grinding zone is modeled as time dependent and moves along a slope decided by contact chord(approximation of con-tact arc). By matching the maximum surface temperature of workpiece derived from this model to the maximum surface temperature of grinding wheel composite as done in Lavins simple thermal model, the relation of maximum surface tem-perature and energy partition of workpiece to grinding speed is obtained. In high speed grinding, as wheel speed increases, energy partition decreases with no regard to table speed.

  • PDF

금형용 WC-Co의 초정밀 연삭 가공 조건에 관한 연구 (Study on Ultra-Precision Grinding Condition of WC-Co)

  • S.J. Heo;J.H. Kang;W.I. KIm
    • 한국정밀공학회지
    • /
    • 제10권1호
    • /
    • pp.42-51
    • /
    • 1993
  • Recently, WC-Co have some excellent properities as the material for the mechanical component such as metallic moulding parts, ball dies parts, and punch parts. This paper describes the surface roughness and grinding force caused by experimental study on the surface grinding of WC-Co with ultra-precision like a mirror shape using diamond wheel. Also, some investigations are carried out using WA grinding wheel to increase improved ground surface roughness such as polishing, lapping effect. Some important results obtained here are summarized as follow. 1) Within this experimental grinding condition, we can be obtained $R_{max}.\;2\mu\textrm{m}\;R_a\;0.3\mu\textrm{m}$ whichare the most favourable ground surface roughness using #140 diamond wheel, and improved surface roughness values about 20 .approx. 25% throughout 5 times sparkout grinding 2) The value of surface roughness is Rmax. $0.49\mu\textrm{m},\;R_a\;0.06\mu\textrm{m}$ using #600 diamond wheel. 3) The area of no rack zone is less than $F_{n}$ 0.27N/mm, Ft 0.009N/mm

  • PDF

크?피드 연삭에서 열원 모델에 관한 연구 (A Study on Heat Source Model to Creep Feed Grinding)

  • 정종달;정해도;최헌종;김남경
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.171-176
    • /
    • 2001
  • This study focuses on the energy partition and heat flux distribution in creep-feed grinding. From the measurements of transient grinding temperature in the workpiece which the thermocouple was embedded, the overall energy partition to the workpiece was estimated with moving heat source theory using the developed scalene triangle heat model. The energy partition was calculated as 3.75% in down grinding smaller than 5.3% in up grinding. Also, the scalene triangle heat model was confirmed as the most optional heat model in correspond to the experimental data. Then, the heat flux distribution was calculated from temperature responses. The heat flux is negative behind the grinding zone where fluid was applied. In this experimental result, the total heat flow to the workpiece per unit width obtained by integrating the positive heat flux was 0,7W/mm for down grinding.

  • PDF

환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I))

  • 황준;정의식
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.

용접 및 연마에서 발생되는 나노입자 특성 평가 : 수농도 및 입경분포 분석 (Characterization of Nanoparticles from Welding and Grinding Processes: Evaluation of Number Concentration and Size Distribution)

  • 김부욱;김현욱
    • 한국산업보건학회지
    • /
    • 제22권3호
    • /
    • pp.184-190
    • /
    • 2012
  • Objectives: This study aimed to characterize the nanoparticles produced by welding and grinding processes. Methods: The number concentrations of particles were mapped to determine the distribution of welding fumes in a workplace atmosphere using a hand-held condensation particle counter. An electrical low-pressure impactor was used for measuring the number concentration and particle size distribution. Results: High number concentrations were found around arc cutting and welding (grinding) processes. In the worker's breathing zone, the mean number concentration was 655,000 particles/cm3 and the count median diameter (CMD) was 84 nm with several multi peak distributions (~20, 70, 300 nm). However, at a distance of 3 m from the welding position, the number concentration decreased to 153,000 particles/cm3 with a 70 nm single peak size distribution. During a grinding process, peaks with high concentrations of nanoparticles were temporarily observed. The mean number concentration was 1,520,000 particles/cm3, and the CMD was 30 nm. Nanoparticles (<100 nm) made up 58% and 92% of the aerosols produced by welding and grinding processes, respectively.

평면연삭에 있어서 AE발생원에 영향을 미치는 연삭인자에 관한 연구 (A Study on the grinding factor affecting the AE Source in surface grinding)

  • 한웅교;김기중;김경석;권동호
    • 한국정밀공학회지
    • /
    • 제3권2호
    • /
    • pp.55-61
    • /
    • 1986
  • The study is concerned with the investigation of grinding factor affecting the AE Source by means of the relation between the amplitude level of AE signal and the depth of wheel engagement in surface grinding by AE method. As the result, work velocity was confirmed that the amplitude of AE signal had almost constant value in comparison with the depth of wheel engagement. But the depth of wheel engagement and the width of wheel engagement were proportional to the amplitude of AE signal. Therefore, when the AE Source was classified by 3-zone, Ws and Wf were affected by the depth of wheel engagement and that Wr was affected by the width of wheel engagement. Also, the adaptability of the AE method was studied about the detection of tool life of grinding wheel, sparkout and initial contact point.

  • PDF