• Title/Summary/Keyword: Grinding tools

Search Result 90, Processing Time 0.034 seconds

A Study on Electro-deposited Multi-layered Diamond Tool for Grinding Sapphire Wafers (사파이어 절삭용 다층 전착 다이아몬드 공구에 대한 연구)

  • Lim, Goun;Song, William;Hong, Joo Wha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.222-226
    • /
    • 2017
  • Recently sapphire wafer has expected as smart phone cover material, however, brittle nature of sapphire needed edge grinding processes to prevent early initiation of cracks. Electro-deposited multi-layered groove tools with $35{\mu}m$ diamond particles were studied for sapphire wafer grinding. Solid particle flow behaviors in agitated electrolyte was studied using PIV(Particle Image Velocimetry), and uniform particle distribution in Ni bond were obtained when agitating impeller was located lower part of electrolyte. Hardness values of $400{\pm}50Hv$ were maintained for retention of diamond particles in electro-deposited bond layer. Sapphire wafer edge grinding test was carried out and multi-layered $160{\mu}m$ thick diamond tool showed much greater grinding capabilities up to 2000 sapphire wafers than single-layered $50{\mu}m$ thick diamond electro-deposited tools of 420 wafers. The reason why 3 times thicker multi-layered tools than single-layered tools showed 5 times longer tool lives in grinding processes was attributed to self-dressed new diamond particles in multi-layered tools, and multi-layered diamond tools could be promising for sapphire grinding.

Establishment Method of Optimum Grinding Conditions Considered with Machine Tool Characteristics (공작기계 특성을 고려한 최적연삭조건 설정방법)

  • Kim, Gun-Hoi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.59-65
    • /
    • 1998
  • In order to utilize the information of well-know grinding database or grinding machine characteristics, a database needs to be designed by considering the delicate property of the machine tools for the high precision and quality of the demanding specification. Among the machine tools for the high precision and quality of the demanding specification. Among the machine tools, machining conditions of the grinding are various and knowledge repeatance obtained form the grinding process are less credable. therefore it is desirable for database, which is used to set the grinding conditions, to utilize the maximum machine tool capability. The present paper studied on the occurance limit of chatter vibration and burn considering the characteristics of machine tool. And also basic experiments were performed to establish the optimum grinding conditions which could maximize the grinding efficiency.

  • PDF

A Study on Precision Infeed Grinding for the Silicon Wafer (실리콘 웨이퍼의 고정밀 단면 연삭에 관한 연구)

  • Ahn D.K.;Hwang J.Y.;Choi S.J.;Kwak C.Y.;Ha S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1-5
    • /
    • 2005
  • The grinding process is replacing lapping and etching process because significant cost savings and performance improvemnets is possible. This paper presents the experimental results of wafer grinding. A three-variable two-level full factorial design was employed to reveal the main effects as well as the interaction effects of three process parameters such as wheel rotational speed, chuck table rotational speed and feed rate on TTV and STIR of wafers. The chuck table rotaional speed was a significant factor and the interaction effects was significant. The ground wafer shape was affected by surface shape of chuck table.

  • PDF

Centreless precision grinding of camshafts as an automated operation

  • Petterson, Roger;Lundberg, Torbjorn
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.8-12
    • /
    • 1989
  • The development of a microprocessor-controlled centreless grinding station has opened the way for the production of automobile camshafts-from raw casting to precision-finished part-as a fully automated operation. This results in manufacture to finer tolerances, with part-to-part consistency and a floor-to-floor time of half that needed for alternative production methods. Shafts with a grinding length of up to 700 mm can be processed.

  • PDF

Establishment Method of Optimum Grinding Conditions Considering with Machine Tool Characteristics (공작기계 특성을 고려한 최적연삭조건 설정)

  • 김건희;이재경;최창용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.8-13
    • /
    • 1997
  • In order to utilize the information of well-known grinding data or grinding machine, a database needs to be designed by considering the delicate property of the machine tools for the high precision and quality of the demanding specification. Among the machine tools, machining conditions of the grinding are various and knowledge repeatance obtained form the grinding process are less credable.Therefore it is desirable for D/B, which is used to set the grinding conditions, to utilize the maximum machine tool capability. The present paper studied occurance limit of chatter vibration and burn considering the characteristics of machine tool. And also basic experiments were performed to establish optimum grinding canditions which can maximize the machining efficiency.

  • PDF

A Study on the Improvement of Performance of High Speed Cutting Tool using Magnetic Fluid Grinding Technique (자기연마기술을 이용한 고속절삭공구 성능향상에 관한 연구)

  • Park S.R.;Cho J.R.;Park M.G.;Yang S.C.;Jung Y.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1289-1293
    • /
    • 2005
  • We will improve tools performance without the change of a tools' physical shape, if we process mirror like finishing on the surface of cutting tools. Because cutting tools' shapes are very complex, the general method of polishing can't be polished. So we will apply new method of polishing which is magnetic fluid grinding technique. Magnetic fluid grinding technique can polish complex shape's workpiece by pressing the surface of workpiece with magnetic and abrasive grains in magnetic field. Therefore we developed the polishing equipment to improve the performance of cutting tools and experimented on various polishing conditions to determine the polishing conditions of cutting tools.

  • PDF

Design and Estimation of a Spindle System for Centerless Grinding Machine (무심연삭기 주축계의 설계 및 성능평가)

  • Park C.H.;Hwang J.H.;Oh Y.J.;Cho S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.86-89
    • /
    • 2005
  • Design and estimation of a spindle system which was composed of grinding spindle and regulating spindle for the centerless grinding of ferrule was performed and prototypes of each spindle were manufactured. Loop stiffness of the spindle system was 130 N/${\mu}m$. Although the value was lower than the target value of 150 N/${\mu}m$, as there included 20% of the safety factor, it was enough to machine the ferrule. Rotational accuracies of each spindle were about 0.2${\mu}m$ at the primary speed of 2,300 rpm(grinding spindle) and 300 rpm(regulating spindle). Temperature rises at the same speed were about $4.4\;\~\;4.7^{\circ}C$ in the case of grinding spindle and $1.8^{\circ}C$in the case of regulating spindle, which were well agreed with the designed value. From these results, it was estimated that the prototype of spindle system had a enough performances for the centerless grinding machine to machine the ferrule.

  • PDF

Model-based process control for precision CNC machining for space optical materials

  • Han, Jeong-yeol;Kim, Sug-whan;Kim, Keun-hee;Kim, Hyun-bae;Kim, Dae-wook;Kim, Ju-whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2003.10a
    • /
    • pp.26-26
    • /
    • 2003
  • During fabrication process for the large space optical surfaces, the traditional bound abrasive grinding with bronze bond cupped diamond wheel tools leaves the machine marks and the subsurface damage to be removed by subsequent loose abrasive lapping. We explored a new grinding technique for efficient quantitative control of precision CNC grinding for space optics materials such as Zerodur. The facility used is a NANOFORM-600 diamond turning machine with a custom grinding module and a range of resin bond diamond tools. The machining parameters such as grit number, tool rotation speed, work-piece rotation speed, depth of cut and feed rate were altered while grinding the work-piece surfaces of 20-100 mm in diameter. The input grinding variables and the resulting surface quality data were used to build grinding prediction models using empirical and multi-variable regression analysis methods. The effectiveness of the grinding prediction model was then examined by running a series of precision CNC grinding operation with a set of controlled input variables and predicted output surface quality indicators. The experiment details, the results and implications are presented.

  • PDF

Review for Features of Wafer In-feed Grinder Structure (실리콘 웨이퍼 단면 연삭기 구조물 특성평가)

  • Ha S.B.;Choi S.J.;Ahn D.K.;Kim I.S.;Choi Y.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.555-556
    • /
    • 2006
  • In recent years, the higher flatness level in wafer shape has been strictly demanded with a high integration of the semiconductor devices. It has become difficult for a conventional wafer preparing process to satisfy those demands. In order to meet those demands, surface grinding with in-feed grinder is adopted. In an in-feed grinding method, a chuck table fur fixing a semiconductor wafrr rotates on its rotation axis with a slight tilt angle to the rotation axis of a cup shaped grinding wheel and the grinding wheel in rotation moves down to grind the wafer. So, stability of the grinder structure is very important to aquire a wafer of good quality. This paper describes the features of the in-feed grinder and some FEM analysis results of the grinder structure.

  • PDF

Development of Ultrasonic Grinding Wheel for Hybrid Grinding System (하이브리드 연삭시스템 초음파 공구 개발)

  • Kim, Kyeong Tae;Hong, Yun Hyuck;Park, Kyung Hee;Lee, Seok Woo;Choi, Hon Zong;Choi, Young Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1121-1128
    • /
    • 2013
  • Ultrasonic grinding system is that the ultrasonic vibration by ultrasonic actuator is applied on conventional grinding system during grinding process. The Ultrasonic vibration with a frequency of over 20kHz can reduce grinding forces and increase surface quality, material removal rate (MRR) and grinding wheel life. In addition, ultrasonic vibration assisted grinding can be used for the materials that are difficult to cut. In this paper, methodology for ultrasonic tools is studied based on finite element method, and in turn the ultrasonic tools are designed and fabricated. It is found that the ultrasonic tool can vibrate with a frequency of 20kHz and amplitude of $25{\mu}m$. In order to verify the machining performance, the grinding experiment is performed on titanium alloy. By applying ultrasonic vibration, the grinding force and temperature are reduced and MRR is increased compared with the conventional grinding.