• Title/Summary/Keyword: Grinding operation

Search Result 123, Processing Time 0.033 seconds

Monitoring system of the grinding working conditions (연삭 작업상태 감시 시스템 개발)

  • 김성렬;윤덕상;김화영;안중환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.387-390
    • /
    • 1997
  • Grinding process takes a long time that grinding machine is setted properly. It is difficult for user to judge correctly the abnormal states generated in grinding process. Air grinding has to be reduced for the improvement of productivity. In addition, it is important to monitor the dressing and the grinding process so that the grinding working maintains optimal grinding conditions. In this study, the monitoring system using the acoustic emission is developed to monitor these processes continuously. This system was able to reduce the preparation as well as the machine setting time in grinding operation.

  • PDF

Qualitative Properties of Sulgidduk with the Different Density of Rice Powder Made by Multifunctional Grinder (가정용 믹서류를 이용하여 제조한 설기떡의 품질특성)

  • Lee, Yu-Na;Lee, Jong-Hyun;Kim, Young-Soon
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.1008-1015
    • /
    • 2012
  • Sulgidduk is a kind of basic steamed rice cake in Korea. Multifunctional portable grinder was used for making sulgidduk and investigated the characteristic changes of rice powder for deciding the proper particle size of rice powder. Operation times for grinding the water absorbed swelled rice were 10, 20, 30 and 40 seconds. Moisture contents of rice powder and sulgidduk showed an increasing tendency with an increase of operation times for grinding. Springiness showed significant differences according to the operation times. Cohesiveness was decreased severely after 40 seconds grinding. Chewiness showed high after 20 seconds grinding in all groups; however, decreased after 40 seconds grinding and showed similar chewiness of the control group. Fracturability also showed severe increased tendency after 20 seconds grinding and decreased after 30 seconds grinding. Strength and hardness showed significant differences; they were increased until 30 seconds and severely decreased after 40 seconds grinding. L values showed significant differences in all the groups ($p{\leq}0.05$). The a and b values did not show any differences in all groups. Overall sensory evaluations, such as colors, flavors and texture, were increased with operation times for grinding and showed significant differences among the groups (p<0.05). As a result of this study, 40 seconds grinding times were the best condition for making sulgidduk, using by multifunctional grinder.

Architecture and Implementation of Database on the Cylindrical Grinding Utilizing the Fuzzy Regression Model (퍼지 회귀모델을 이용한 연삭가공용 데이타 베이스의 설계와 활용(실가공 데이타베이스에 관하여))

  • Kim, Gun-hoi;Inasaki, Ichiro;Lee, Jae-kyung;Song, Ji-bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.219-229
    • /
    • 1994
  • This paper describes an expert system on the cylindrical grinding operations in order to establish the optimum grinding conditions, which satisfy the maximum removal rates, considering the several constraints of grinding power, workpiece burn, chatter vibration and surface roughness. Specialized knowledge of the grinding operations are acquired from the actual operation database. Coefficientis in the experimental equations are obtaines through the fuzzy regression model based on the fuzzy set theory, and are stored in the actual operation database. The developed system is capable of determining the optimum grinding conditions taking into account some problems, and practical examples of implementaion are described.

  • PDF

Simulation of Ground Surface by In-process Measurement (인프로세스 측정을 통한 연삭 시뮬레이션)

  • Hong, Min-Sung;Choi, Woo-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.160-165
    • /
    • 1999
  • In surface grinding, the conditions of the grinding wheel give a significant effect on the ground workpieces comparing with other metal removal provesses. In this paper, to assist the development, a non-contacting optical method by the laser beam is introduced. The in-process measurement of scattering intensities has been made during surface grinding processes and the surface textures of wheel working surfaces are captured. Also, in order to determine the dressing time monitoring method of a grinding wheel, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism and the surface-shaping system between the grinding wheel and the workpiece. The optimal dressing time is determined by the amount of the grain wear and work surface roughness.

  • PDF

In-process Topographical Evaluation of CBN wheel surface

  • Lee, Joosang;Kim, Heenam;Minsung Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.507-513
    • /
    • 1998
  • In surface grinding, the conditions of the grinding wheel has much more significant effect on the machined workpiece as compared to other metal removal processes. The contact between the grinding wheel and the workpiece introduce heat and resistance, which restrict the self-dressing of the grits and result in burrs cracks on the workpiece. Therefore, before or during the grinding operation, it is necessary to self-dressing the grinding wheel for more accurate performance. In general, however, the choice of the dressing time has made by the operator's own decision or the condition of the workpiece. In this paper, a new method for finding the optimal dressing time of the grinding wheel is proposed. In order to develop a more sophisticated methodology, a non-contacting in-process optical measurement method using a laser beam has been introduced to find the glazing, loading, and spilling of the grinding wheel Simultaneously, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism between the grinding wheel and the workpiece. The grains of the grinding wheel are simulated and the optimal dressing time is determined based on the amount of grain wear and work surface roughness.

  • PDF

Ground Surface Control by the Surface-Shaping System (표면 가공법을 이용한 연삭 표면 제어)

  • 최우석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.219-224
    • /
    • 1997
  • In surface grinding, the contact between the grinding wheel and the workpiece introduces heat and resistance, which restrict the self-dressing of the grits and result in burrs and cracks on the workpiece. Therefore, before or during th grinding wheel for more accurate performance. In order to determine the dressing time monitoring method of grinding wheel in surface grinding, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism and surface-shaping system between the grinding wheel and the workpiece. The optimal dressing time is determined based on the amount of the grain wear and work surface roughness.

  • PDF

Development of a Parallel-Serial Robot Arm for Propeller Grinding (프로펠러 연삭작업을 위한 병렬-직렬 로보트 암 개발)

  • Lee, Min Ki;Choi, Byung Oh;Jung, Jong Yoon;Park, Kun Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.146-158
    • /
    • 1996
  • This paper develops a robot arm for propeller blade grinding. The grinding work requires a high stiffness robot arm to reduce deformation and vibration which are generated during machining operation. Conventional articulated robots have serial connecting links from the base to the gripper. Thus, they have very weak structure to the stiffness for grinding operation. Stewart Platform is a typical parallel robotic mechanism with very high stiffness but it has small work space and large installation space. This research proposes a new grinding robot arm by combining parallel mechanism with serial mechanism. Therefore, the robot has large range of work space as well as high stiffness. This paper introduces the automatic system for propeller grinding utilizing the robot and the design of proposed robot arm.

  • PDF

A Study on the Dressing Time of AI2O3 Grinding Wheel in Surface Grinding by Laser Beam (평면연삭 가공시 레이저 빔을 이용한 $AI_2O_3$ 계 연삭숫돌의 드레싱시기에 관한 연구)

  • 김희남
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.17-23
    • /
    • 1995
  • This paper describes investigation of the dressing time by laser in the surface grinding operation. Always dressing work is done before grinding operation. And then generates wear and roading on the wheel by contact between the grinding performance but also ground surfaces. On these states dressing work is needed. On this paper contour of the wheel by He-Ne laser is measured. It has also been found that the wheel deflection reduces the actual depth of cut and the roughness of the ground surface.

  • PDF

Evaluation of Pre-estimation Model to the Inprocess Surface Roughness for Grinding Operations

  • Kim, Gun-Hoi
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.4
    • /
    • pp.24-30
    • /
    • 2002
  • In grinding operations, one of the most important problems is to increase efficiency of process. In order to achieve this purpose, it is necessary to administer the tool lift of grinding wheel and to optimize grinding conditions. Frequently dressing result in lowering the process efficiency remarkably and makes production cost high. On the other hand, grinding with a worn wheel causes the workpiece surface roughness to increase and often results in the occurrence of such troubles as chatter vibration and homing.

Extraction of the Surface Roughness in Grinding Operation by Acoustic Emission Signal (AE 신호에 의한 연삭가공 표면거칠기 검출)

  • Chung, Sung-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.147-153
    • /
    • 1999
  • An in-process extraction method of the ground surface roughness is a bottle-neck and essential field in conventional machining process. We define the D.A.R.F(Dimensionless Average Roughness Factor) that has a roughness characteristic of ground surface. D.A.R.F include the absolute average and the standard deviation values which are the analytic parameters of the AE(Acoustic Emission) signal generated during the grinding operation. The theoretical equation between the surface roughness and the D.A.R.F has been derived from the linear regressive analysis and verified its availability through the experimentation on the surface grinding machine.

  • PDF