• 제목/요약/키워드: Grinding of glass

검색결과 110건 처리시간 0.04초

성형용 초경합금(WC) 코어면의 Re-Ir 코팅이 형상정도와 표면조도에 미치는 영향에 관한 연구 (A Study on Influence of PV and Ra with Re-Ir Coating of WC Core Surface for Glass Molding Lens)

  • 김현욱;김상석;김혜정;김정호
    • 한국전기전자재료학회논문지
    • /
    • 제20권9호
    • /
    • pp.808-811
    • /
    • 2007
  • Aspheric glass lens have recently been used in camera phone module because they are more effective than spherical ones. In this paper, the grinding condition of the tungsten carbide molding core has been found after applying DOE to the development of the aspheric glass lens for the 3 Megapixel and 2.5x camera-phone module. Also, the ultra precision grinding process was investigated under this condition by experiment. Re-Ir coating was applied on the ground surface of the tungsten carbide molding core. The influence of Re-Ir coating on the form accuracy and surface roughness of molding core was compared and evaluated. The form accuracy and surface roughness of the molding core were improved by application of Re-Ir coating on the surface of the tungsten carbide molding core.

초소형 초광각 비구면 유리렌즈의 초정밀 연삭가공기술에 관한 연구 (An Research on Ultra Precisive Polishing Manufacturing Technology of Glass for Micromini and Super Wide-Angle Aspherics Glasses Lens.)

  • 김두진;유경선;현동훈
    • 한국생산제조학회지
    • /
    • 제19권2호
    • /
    • pp.275-281
    • /
    • 2010
  • This research's goal is to process directly aspherics with big sagment and thin center thickness. If we can process directly aspherics with big sagment and thin center thickness, we think it greatly helps to reduce the time of developing optical system. We made very thin glass using diamond grinding whetstone regarding the trace of tool and the detailed drawing of tool super precisive aspherics that has 0.46mm center thickness and over $30^{\circ}$ segment, $0.1{\mu}m$ machining accuracy, 15nm surface accuracy. We think this research's result will be effective to open new market because it is applied not only cell phone optical system but also CCTV robot optical system, internet phone optical system. Also we expect to enhance the super strong brittle precisive process's possibility with super precisive processing technique that achieves 0.46mm glass center thickness as first in the world.

광정보저장용 광픽업 대물렌즈 성형용 초경합금 (Co 0.5%) 초정밀절삭 특성(I) (The property of WC(Co 0.5%) ultra precision turning for optical pick-up objective lens molding press for optical infomation storing(I))

  • 김민재;이준기;황연;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.178-178
    • /
    • 2009
  • High-density optical information storing equipment, which is using Blu-ray, is the next generation information storing equipment that has about form six times to thirty-five times capacities. and high-density optical information storing equipment uses high NA(Numerical Aperture) aspheric glass objective lens as optical pick-up equipment to record and recognize high-density date. Generally this objective lens is developed and produced through a way of GMP(Glass Molding Press) that uses molding core that is performde by Ultra precision grinding, but grinding performing that has high-accuracy is very difficult because objective lens form is high NA. In this research, we preformed Ultra precision turning, using single crystal diamond bite, about WC(Co 0.5%), sintering brittleness material that is used molding core's material for GMP. and we confirmed aspheric glass lens compression of deformities molding core's Ultra precision turning possibility by measuring surface roughness(Ra) and processing surface's condition.

  • PDF

비구면 Glass 렌즈 성형용 초경합금(WC) 코어의 DLC 코팅 효과 (DLC Coating Effect of WC Core Surface for Glass Molding Lens)

  • 김현욱;정상화;박용필;김상석;김혜정;김정호
    • 한국전기전자재료학회논문지
    • /
    • 제19권11호
    • /
    • pp.1050-1054
    • /
    • 2006
  • There have been intensive and continuous efforts in the field of DLC coating process because of their feature, like high hardness, high elasticity, abrasion resistance and chemical stability and have been applied widely the industrial areas. In this research, optimal grinding condition was investigated using Microlens Process Machine for the development of aspheric glass lens which is to be used for mobile phone module with 3 mega pixel and 2.5X optical zoom, and tungsten carbide(WC) mold cote was manufactured using high performance ultra precision machining and the effects of DLC coating on the form accuracy(PV) and surface roughness(Ra) of WC mold core was evaluated.

냉각수 유량에 따른 양면 랩그라인딩 정반의 전열특성 (Characteristics of Heat Transfer in DLG Platen According to Flow Rate of Coolant)

  • 김동균;김종윤;이현섭
    • Tribology and Lubricants
    • /
    • 제32권2호
    • /
    • pp.50-55
    • /
    • 2016
  • Recently, a double-side machining process has been adopted in fabricating a sapphire glass to enhance the manufacturability. Double-side lap grinding (DLG) is one of the emerging processes that can reduce process steps in the fabrication of sapphire glasses. The DLG process uses two-body abrasion with fixed abrasives including pallet. This process is designed to have a low pressure and high rotational speed in order to obtain the required material removal rate. Thus, the temperature is distributed on the DLG platen during the process. This distribution affects the shape of the substrate after the DLG process. The coolant that is supplied into the cooling channel carved in the base platen can help to control the temperature distribution of the DLG platen. This paper presents the results of computational fluid dynamics with regard to the heat transfer in a DLG platen, which can be used for fabricating a sapphire glass. The simulation conditions were 200 rpm of rotational speed, 50℃ of frictional temperature on the pallet, and 20℃ of coolant temperature. The five cases of the coolant flow rate (20~36 l/min) were simulated with a tetrahedral mesh and prism mesh. The simulation results show that the capacity of the generated cooling system can be used for newly developed DLG machines. Moreover, the simulation results may provide a process parameter influencing the uniformity of the sapphire glass in the DLG process.

Mechanical and durability properties of concrete incorporating glass and plastic waste

  • Abdelli, Houssam Eddine;Mokrani, Larbi;Kennouche, Salim;Aguiar, J.L. Barroso de
    • Advances in concrete construction
    • /
    • 제11권2호
    • /
    • pp.173-181
    • /
    • 2021
  • The main objective of this work is to contribute to the valorization of plastic and glass waste in the improvement of concrete properties. Waste glass after grinding was used as a partial replacement of the cement with a percentage of 15%. The plastic waste was cut and introduced as fibers with 1% by the total volume of the mixture. Mechanical and durability tests were conducted for various mixtures of concrete as compressive and flexural strengths, water absorption, ultrasonic pulse velocity, and acid attack. Also, other in-depth analyses were performed on samples of each variant such as X-ray diffraction (XRD), thermogravimetric analysis (DSC-TGA), and scanning electron microscope (SEM). The results show that the addition of glass powder or plastic fibers or a combination of both in concrete improved in the compression and flexural strengths in the long term. The highest compressive strength was obtained in the mix which combines the two wastes about 26.72% of increase compared to the control concrete. The flexural strength increased in the mixture containing the glass powder. Therefore, the mixture with two wastes exhibits better resistance to aggressive sulfuric acid attack, and incorporating glass powder improves the ultrasonic pulse velocity.

비구면 유리 렌즈 금형의 열응력 해석 (Thermal stress analysis for an aspheric glass lens mold)

  • 이영민;장성호;허영무;신광호;윤길상;정태성
    • 한국정밀공학회지
    • /
    • 제25권12호
    • /
    • pp.125-131
    • /
    • 2008
  • In the past, precision optical glass lenses were produced through multiple processes such as grinding and polishing, but mass production of aspheric lenses requiring high accuracy and having complex profile was rather difficult. In such a background, the high-precision optical GMP processes were developed with an eye to mass production of precision optical glass parts by molding press. Generally because the forming stage in a GMP process is operated at high temperature above $570^{\circ}C$, thermal stresses and deformations are generated in the aspheric glass lens mold that is used in GMP process. Thermal stresses and deformations have negative influences on the quality of a glass lens and mold, especially the height of the deformed glass lens will be different from the height of designed glass lens. To prevent the problems of a glass lens mold and the glass lens, it is very important that the thermal stresses and deformations of a glass lens mold at high forming temperature are considered at the glass molds design step. In this study as a fundamental study to develop the molds used in an aspheric glass lens fabrication, a heat transfer and a thermal stress analysis were carried out for the case of one cavity glass lens mold used in progressive GMP process. Finally using analysis results, it was predicted the height of thermally deformed guide ring and calculated the height of the guide ring to be modified, $64.5{\mu}m$. This result was referred to design the glass lens molds for GMP process in production field.