• Title/Summary/Keyword: Grinding force

Search Result 232, Processing Time 0.028 seconds

Study on Optical Properties of Lithium Niobate Using CMP (화학기계적 연마에 의한 리튬니오베이트의 광학 특성에 관한 연구)

  • Jeong, Suk-Hoon;Kim, Young-Jin;Lee, Hyun-Seop;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.196-200
    • /
    • 2009
  • Lithium niobate ($LN:LiNbO_3$) is a compound of niobium, lithium and oxygen. The characteristics of LN are piezoelectricity, ferroelectricity and photoelectricity, and which is widely used in surface acoustic wave (SAW). To manufacture LN devices, the LN surface should be a smooth surface and defect-free because of optical property, but the LN material is processed difficult b traditional processes such as grinding and mechanical polishing (MP) because of its brittleness. To decrease defects, chemical mechanical polishing (CMP) was applied to the LN wafer. In this study, the suitable parameters such as down force and relative velocity, were investigated for the LN CMP process To improve roughness, the LN CMP was performed using the parameters that were the highest removal rate among process parameters. And, evaluation of optical property was performed by the optical reflectance.

Cutting Characteristics of Ball-end Mill with Different Helix Angle (볼 엔드밀 헬릭스 각에 따른 절삭 특성)

  • Cho, Chul Yong;Ryu, Shi Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.395-401
    • /
    • 2014
  • Development of five axis tool grinding machine and CAD/CAM systems increase tool design flexibility. In this research, investigated are cutting characteristics of ball-end mill with different helix angle. Special WC ball-end mills with $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ helix angles are designed and used in various cutting tests. Machining performance according to helix angle variation is evaluated from cutting forces, surface roughness, tool wear, produced chip shape, and vibration characteristics. The ball-end mill with $10^{\circ}$ helix angle shows the best cutting performance due to appropriate chip load distribution and smooth chip flow. This research can be used for cutting edge geometry optimization and novel design of ball-end mill.

Analysis of the Rolling Contact Fatigue for Work Roll in Finishing Mill of Hot Strip Rolling (열간 연속판재 압연기의 작업롤 전동피로해석)

  • 배원병;박해두;송길호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.292-300
    • /
    • 1995
  • According to the number of cold-rolled coils, the amount of roll wear and thermal expansion, and roll gap profile were calculated, by using the actual data from the finishing mill. Also, based on those data, the calculations of the deflection, the flattening, and the contact pressure of vwork rolls and backup rolls were made respectively. Specially, in the calculation of contact pressure, the numerical results were obtained not only during the normal rolling, but also during the abnormal rolling, by modeling mathematically the dynamic impact force which occurs when the head section of the strip is threading through rolls. With those results the growth of the fatigue region and the fatigue damage of rolls were predicted. Also the optimum roll-grinding depth was determined to maximize the roll life.

Turning the Machining Characteristics of Feed-through Ceramics (피드스루용 세라믹의 선삭 가공 특성에 관한 연구)

  • Park, Se-Jin;Ha, Jun-Tae;Yang, Dong-Ho;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.81-86
    • /
    • 2020
  • A ceramic vacuum chamber feedthrough ceramic insulator is made of Al2O3; the manufacturing process involves filling alumina powder into a urethane mold and pressing it with a rubber press to produce a molded body. Thereafter, manufacturing is completed through primary shape processing, sintering, and secondary shape processing in the green body, which is a pressurized molding body, This work is intended to prevent defects in the first shape processing by improving the ceramic insulator in the green body, and to improve the productivity of the ceramic insulator by determining the optimal processing conditions.

A Study on the Drilling Characteristics of Carbon Fiber Epoxy Composite Materials by Diamond Grit Electroplated Drills (다이아몬드 입자 전착드릴에 의한 탄소섬유 에폭시 복합재료의 드릴링 특성에 관한 연구)

  • Kim, Hyeong-Chul;Kim, Ki-Soo;Hahm, Seung-Duck;Kim, Hong-Bea;Namgung, Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.27-38
    • /
    • 1995
  • For solving troubles happened during the drilling process with carbon fiber epoxy composite materials(CFRP) by using HSS drill, a few types of diamond gift electroplated drills are manufactured, and machinability of these drills is experimented with a variety of cutting speed and feed rate. These drills have some advantages of good wear resistant and the conception of grinding process. As a result, using of these drills improves both troubles being caused by tool wear and damage of exit surface depending on fiber stacking angle. It is desirable that cutting conditions for the cutting thickness per revolution must be set under 0.01mm when the size of a diamond grit is # 60 .approx. 80.

  • PDF

The Characteristics of Dispersed Asbestos Fibers Produced From Building Materials (건축재료에서 발생되는 석면입자의 특성 연구)

  • 유성환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.191-199
    • /
    • 1993
  • This paper describes the results of a systematic study to determine the characteristics of particle generated from various types of asbestos containing material(ACM) and manmade fiber material(MMFM) during operations of cutting and grinding in laboratory and workplace. Tests were conducted with a specially designed glove box which allowed complete sampling of the generated asbestos fibers. Specificially, air measurements were made during ACM and MMFM installation in building. All personal air samples collected were identified by polarized light microscopy(PLM), X-ray diffraction(XRD) and scanning electron microscope with energy dispersive X-ray analysis(SEM/EDXA). Also, the samples were counted by phase contrast microscope(PCM) in order to compare the results with the permissible exposure standard for workplace. Results indicate that the characterisitcs of fibers found in the roofing sheet, the ceiling and the wall insulation boards were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of rock wool. The concentrations of airborne fibers from various building materials cut by a grinder for 5 minutes were in the ranges of 0.09 $\sim$ 1.71 fibers/cc(f/cc). The highest concentration(1.71f/cc) was found during grinding the wall insulation board which also contains rock wool. The airborne fiber concentrations generated by installing at workplace were ranged from 0.0009 to 0.029 f/cc. All asbestos fibers from the ceiling insulation board at workplace were less than 20$\mu$m in length and more than 20% of them had the average aspect ratio greater than 20. Therefore, for the purpose of decreasing asbestos and man-made fiber concentrations at the workplace, the ceiling and wall board should use strong binding material to increase the binding force with fiber. Also, the permissible exposure standard for workplace(2.0f/cc) in Korea should be constituted below the maximum avaiable concentration measured at glove box.

  • PDF

Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

  • Erdemir, Ugur;Sancakli, Hande Sar;Sancakli, Erkan;Eren, Meltem Mert;Ozel, Sevda;Yucel, Taner;Yildiz, Esra
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.434-443
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS. A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of $6mm{\times}4mm$ and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with $30{\mu}m$ silica oxide particles ($Cojet^{TM}$ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at ${\alpha}=.05$. RESULTS. Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION. Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used.

A Study on Thermal Flow Analysis in Grinding Disc Assembly for Disintegration of Secondary Battery Materials (이차전지 원료 해쇄용 그라인딩 디스크 어셈블리 내 열 유동 해석에 관한 연구)

  • Dong-Min Yun;Yong-Han Jeon
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.34-39
    • /
    • 2022
  • Sustained economic development around the world is accelerating resource depletion. Research and development of secondary batteries that can replace them is also being actively conducted. Secondary batteries are emerging as a key technology for carbon neutrality. The core of an electric vehicle is the battery (secondary battery). Therefore, in this study, the temperature change by the heat source of the hammer and the rotational speed (rpm) of the abrasive disc of the Classifier Separator Mill (CSM) was repeatedly calculated and analyzed using the heat flow simulation STAR-CCM+. As the rotational speed (rpm) of the abrasive disk increases, the convergence condition of the iteration increases. Under the condition that the inlet speed of the Classifier Separator Mill (CSM) and the heat source value of the disc hammer are the same, the disc rotation speed (rpm) and the hammer temperature are inversely proportional. As the rotational speed (rpm) of the disc increases, the hammer temperature decreases. However, since the wear rate of the secondary battery material increases due to the strong impact of the crushing rotational force, it is determined that an appropriate rpm setting is necessary. In CSM (Classifier Separator Mill), it is judged that the flow rate difference is not significantly different in the direction of the pressure outlet (Outlet 1) right above the classifier wheel with the fastest flow rate. Because the disc and hammer attachment technology is adhesive, the attachment point may deform when the temperature of the hammer rises. Therefore, it is considered necessary to develop high-performance adhesives and other adhesive technologies.

A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS WITH CAVITY DESIGN ON FRACTURE OF COMPOSITE RESIN INLAY RESTORED TOOTH (복합레진 인레이 수복시 와동형태에 따른 치아파절에 관한 유한요소법적 연구)

  • Kim, Chull-Soon;Min, Byung-Soon
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.231-254
    • /
    • 1994
  • Fracture of cusp, on posterior teeth, especially those carious or restored, is major cause of tooth loss. Inappropriate treatments, such as unnecessarily wide cavity preparations, increase the potential of further trauma and possible fracture of the remaining tooth structures. Fracture potential may be directly related to the stresses exerted upon the tooth during masticatory function. The purpose of this study is to evaluate the fracture resistance of tooth, restored with composite resin inlay. In this study, MOD inlay cavity prepared on maxillary first premolar and restored with composite resin inlay. Three dimensional finite element models with eight nodes isoparametric solid element, developed by serial grinding-photographing technique. These models have various occlusal isthmus and depth of cavity, 1/2, 1/3 and 1/4 of isthmus width and 0.7, 0.85 and 1.0 of depth of cavity. The magnitude of load was 474 N and 172 N as presented to maximal biting force and normal chewing force. These loads applied onto ridges of buccal and lingual cusp. These models analyzed with three dimensional finite element method. The results of this study were as follows : 1. There is no difference of displacement between width of occlusal isthmus and depth of cavity. 2. The stress concentrated at bucco-mesial comer, bucco-disal comer, pulpal line angle and the interface area between internal slopes of cusp and resin inlay. 3. The vector of stress direct to buccal and lingual side from center of cavity, to tooth surface going on to enamel. The magnitude of vector increase from occlusal surface to cervix. 4. The crack of tooth start interface area, between internal slop of buccal cusp and resin inlay. It progresses through buccopulpal line angle to cervix at buccomesial and buccodistal comer. 5. The influence with depth of cavity to fracture of tooth was more than width of isthmus. 6. It would be favorable to make the isthmus width narrower than a third of the intercuspal distance and depth of cavity is below 1 : 0.7.

  • PDF

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.