• 제목/요약/키워드: Grinding characteristics

검색결과 445건 처리시간 0.023초

구조용 세라믹스의 연삭특성에 관한 연구(I) (Grinding Characteristics of Structural Ceramics-I)

  • 하상백;정재극;이종찬
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.14-18
    • /
    • 1995
  • Although structural ceramics have excellent mectanical properties, it is very difficult to grind with high efficiency and high quality because of their high strength, hardness, and brittleness. Unfortunately machined ceramics often contain surface damages such as micro fracture and crack on account of brittle fracture. Therefore, is is important to minimize the brittle fracture. The present paper examines grinding characteristics of representative structural ceramics,such as Al /sab 2/O /sab 3/, SiC, Si /sab 3/ N /sab 4/. Effects of grinding variables including table speed and depth of cut on the grinding performance were investigated. Experimental results show that the surface quality is related to the specific grindings energy. The higher specific energy results in the better surface quality.

  • PDF

탄소섬유 에폭시 복합재료 연삭숫돌 선정에 관한 연구 (A Study on the Grinding Characteristics of the Carbon Fiber Epoxy Composite Materials with the Vitrified Bonded Wheel)

  • 한흥삼
    • Composites Research
    • /
    • 제13권5호
    • /
    • pp.44-49
    • /
    • 2000
  • Although the net-shape molding of composites is generally recommended, molded composites frequently requires cutting or grinding due to the dimensional inaccuracy for precision machine elements. The surface roughness and cutting force were also measured to investigate the surface grinding characteristics of the composites using the vitrified bonded wheel (WA, GC). The experiments were performed dry grinding conditions with respect to cutting speed, feed speed, depth of cut of the stacking sequence $[O]_{nT.}$ From the experimental investigation, the optimal conditions both the vitrified bonded wheel WA and GC for the surface grinding are suggested.

  • PDF

연삭기용 자기베어링 주축계의 고속화에 관한 연구 (Design of a Magnetic Bearing System for a High Speed Grinding Spindle)

  • 박종권;노승국;안대균
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.233-243
    • /
    • 1998
  • The demand of high speed machining is increasing due to the high speed cutting and grinding provides high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting or grinding. This paper describes a design process of an active magnetic bearing system for a high speed grinding spindle with power 5.5kW and maximum speed 60,000rpm. Magnetic actuators are designed by the magnetic circuit theory considering static load condition, and examined with FEM analysis. Dynamic characteristics are also considered, such as bandwidth, stiffness, natural frequency and static deflection. System characteristics are simulated with a rigid rotor model.

  • PDF

실리콘 웨이퍼의 반경 방향에 따른 연삭 특성 평가 (Evaluation of Grinding Characteristics in Radial Direction of Silicon Wafer)

  • 김상철;이상직;정해도;이석우;최헌종
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.980-986
    • /
    • 2003
  • As the ultra precision grinding can be applied to wafering process by the refinement of the abrasive, the development of high stiffness equipment and grinding skill, the conventional wafering process which consists of lapping, etching, Ist, 2nd and 3rd polishing could be exchanged to the new process which consists of precision surface grinding, final polishing and post cleaning. Especially, the ultra precision grinding of wafer improves the flatness of wafer and the efficiency of production. Futhermore, it has been not only used in bare wafer grinding, but also applied to wafer back grinding and SOI wafer grinding. This paper focused on the effect of the wheel path density and relative velocity on the characteristic of ground wafer in in-feed grinding with cup-wheel. It seems that the variation of the parameters in radial direction of wafer results in the non-uniform surface quality over the wafer. So, in this paper, the geometric analysis on grinding process is carried out, and then, the effect of the parameters on wafer surface quality is evaluated

  • PDF

평면연삭에서 연삭력 변화와 숫돌수명 (Variation of Grinding Force and Wheel Life in Surface Grinding)

  • 최성삼;구양;곽재섭;하만경;박노광
    • 한국정밀공학회지
    • /
    • 제19권3호
    • /
    • pp.59-65
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel grain affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, te grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the WA and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

실리콘 웨이퍼 연삭가공 특성 평가에 관한 연구 (Study on Characteristics of Ground Surface in Silicon Wafer Grinding)

  • 이상직;정해도;이은상;최헌종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.128-133
    • /
    • 1999
  • In recent years, LSI devices have become more powerful and lower-priced, caused by a development of various wafer materials and an increase in the diameter of wafers. On the other hand, these have created some serious problems in manufacturing of wafers because materials used as semiconductor substrate are very brittle. In view of this fact, there are some trials to apply shear-mode(or ductile-mode) grinding for efficient manufacturing of semiconductor wafers instead of conventional lapping process. In fact grinding process that has not only more excellent degree of accuracy but also more adaptable to fully automated manufacturing than lapping, is already used in Si machining field. This paper described the elementary studies to establish the grinding technology of wafers. First, we investigated the variation of grinding force and the transition of grinding mode as various grinding conditions. Then, it was inspected that the change of grinding force affected the integrity such as the topography and the roughness of ground surfaces, and led to the chemical defects generation and distribution in damaged layer. The degree of defects was estimated by FT-IR(Fourier Transformed Infrared) Spectroscopy and Auger Electron Spectroscopy

  • PDF

교반 볼밀을 이용한 왕겨재의 습식 미세분쇄에 관한 연구 (Wet Fine Grinding of Rice Husk Ash using a Stirred Ball Mill)

  • 박승제;김명호;최연규
    • Journal of Biosystems Engineering
    • /
    • 제31권1호
    • /
    • pp.33-38
    • /
    • 2006
  • This work was conducted to find the operating characteristics of an efficient wet grinding system designed to obtain fine rice husk ash powder. Once the rice husk was combusted and the thermal energy was recovered from the furnace, the ash was fed and pulverized in the grinding system resulting a fine powder to be used as a supplementary adding material to the portland cement. Grinding time (15, 30, 45 min), impeller speed (250, 500, 750 rpm), and mixed ratio (6.7, 8.4, 11.l, 20.9) were three operating factors examined for the performance of a wet-type stirred ball mill grinding system. For the operating conditions employed, mean diameter of fine ash powder, specific energy input, and grinding energy efficiency were in the range of $2.83{\sim}9.58{\mu}m,\;0.5{\sim}6.73kWh/kg,\;and\;0.51{\sim}3.27m^2/Wh$, respectively. With the wet-type stirred ball mill grinding system used in this study, the grinding energy efficiency decreased with the increase in total grinding time, impeller speed, and mixed ratio. The difference in specific surface area of powder linearly increased with logarithm in total number of impeller revolution and the grinding energy efficiency linearly decreased. Grinding time of 45 min, impeller speed of 500 rpm, and mixed ratio of 6.7 were chosen as the best operating condition. At this condition, mean particle diameter of the fine ash, grinding energy efficiency, grinding throughput, and specific energy input were $2.84{\mu}m,\;2.28m^2/Wh,\;0.17kg/h$, and 2.03kWh/kg, respectively. Wet fine grinding which generates no fly dust causing pollution and makes continuous operation easy, is appeared to be a promising solution to the automatization of rice husk ash grinding process.

교반 볼밀을 이용한 왕겨재의 건식 미세분쇄에 관한 연구 (Dry Fine Grinding of Rice Husk Ash using a Stirred Ball Mill)

  • 박승제;최연규;김명호;이종호
    • Journal of Biosystems Engineering
    • /
    • 제25권1호
    • /
    • pp.39-46
    • /
    • 2000
  • This work was conducted to study the operating characteristics of a grinding system designed to obtain fine rice husk ash powder. To find better utilizing of rice husk, a valuable by-product from rice production, once the rice husk was incinerated and the thermal energy was recovered from the furnace, the ash was fed and pulverized in the grinding system resulting a fine powder to be used as a supplementary adding material to the portland cement manufacturing . The rice husk ash grinding system consisted of a high speed centrifugal fan for the preliminary coarse milling and a dry-type stirred ball mill for the subsequent fine grinding . Total grinding time 9 5, 15, 30, 45 min), impeller speed (250, 500, 750 rpm) , and mixed ratio (4.8, 7.9, 14.9) were three operating factors examined for the performance of a stirred ball mill used for the fine grinding of ash. With the stirred ball mill used in this study, the minimum attianable mean diameter of rice husk ash powder appeared to be 2 ${\mu}{\textrm}{m}$. During the find grinding, the difference in specific surface area of powder showed an increase and the grinding energy efficiency decreased with the increase in total grinding time, impeller speed ,and mixed ratio. For the operating conditions employed , the resulting mean diameter of fine ash powder, specific energy input, and grinding energy efficiency were in the range of 1.79 --16.04${\mu}{\textrm}{m}$, 0.072-5.226kWh/kg, an d1.11-12.15$m^2$/Wh, respectively. Grinding time of 30 min , impeller speed of 750 rpm, and mixed ratio of 4.8 were chosen as the best operating conditions of the stirred ball mill for fine grinding . At these conditions, mean particle diameter of the fine ash, grinding energy efficiency, grinding throughtput, and specific energy input were 2.73${\mu}{\textrm}{m}$, 3.95$m^2$/Wh, 0.25kg/h, and 1.22kWh/kg, respectively.

  • PDF

난용성 의약품의 생체이용률 증진을 위한 무정형 초미립자의 조제 : UDCA와 SLS의 혼합분쇄 효과 (Amorphous Ultrafine Particle Preparation for Improvement of Bioabailability of Insolube Drugs: Effect of Co-Grinding of UDCA with SLS)

  • 정한영;곽성신;김현일;최우식
    • 약학회지
    • /
    • 제46권2호
    • /
    • pp.102-107
    • /
    • 2002
  • The particle size of medicinal materials is an important physical property which affects the pharmaceutical behaviors such as dissolution, chemical stability, compressibility and bioavailability of solid dosage forms. The size reduction of raw pharmaceutical powder is needed to formulize insoluble drugs or slightly soluble drugs and to improve the pharmaceutical properties such as the solubility, the pharmaceutical mixing and the dispersion. The objective of the present study is to evaluate the grinding characteristics of ursodeoxycholic acid(UDCA) as a model of insoluble drugs. The effects of the grinding time and the amount of additive on particle size distribution of ground UDCA were investigated. Grinding of insoluble drug, UDCA and a series of dry co-grinding experiments of UDCA with sodium lauryl sulfate(SLS) as an additive were carried out using a planetary ball mill. It was measured that the median diameter and the particle size distribution of ground products with grinding UDCA and additive SLS by Mastersizer. As a result of co-grinding of UDCA and SLS, the particle size of co-grinding products was decreased more than single grinding one. However, it was observed that co-grinding products were reaggregated to larger particles after 120 min.

A comparative study of grinding mill type on aluminium powders with carbon nano tube: traditional ball mill and planetary ball mill

  • 최희규;최경필;배대형;이승백;이웅;김성수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.27.2-27.2
    • /
    • 2009
  • Grinding characteristics for aluminium and carbon nanotubes (CNTs) powder during traditional and planetary ball milling investigated from the viewpoint of particle behaviour with the aimat developing CNT-dispersed samples ground based on powder metallurgy routes.In this work, a comparison between the pure aluminium and CNT input aluminium grinding was carried out to determine grinding time effect on size reduction.We observed that the use of the curly small-diameter multi-walled carbon nanotubes (MWCNTs) attributed to the beneficial role of the MWCNTs as grinding aids. It is suggested that careful choices of the sizes of CNTs and Al powders would allow fine-grinding of composite particles with uniformly distributed CNT reinforcements thereby ensuring improved properties of the final composites produced by low-temperature compacting.

  • PDF