• Title/Summary/Keyword: Grinding Quality

Search Result 226, Processing Time 0.025 seconds

Structural Optimization of Additive/Subtractive Hybrid Machines (3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구)

  • Park, Joon-Koo;Kim, Eun-Jung;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

Selection of Optimal Processing Conditions for Quartz Using the Taguchi Method (다구찌법을 이용한 석영의 최적 가공조건 선정에 관한 연구)

  • Jeong, Ho-In;Choi, Seong-Jun;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.123-129
    • /
    • 2022
  • Quartz (SiO2) has high abrasion and heat resistances and excellent chemical and mechanical properties; therefore, it is used in various industries, such as machinery, chemistry, optics, and medicine. Quartz is a high-hardness and brittle material and is classified as the topmost difficult-to-cut material, which is because of the cracking or chipping at the edge during processing. Corner wear, such as cracks and chippings that occur during cutting, is a major cause for the deterioration in the machining quality. Therefore, many researchers are investigating various techniques to process quartz effectively. However, owing to the mechanical properties of quartz, most studies have been conducted on grinding, micromachining, and microdrilling. Few studies have been conducted on quartz processing. The purpose of this study was to analyze the machining characteristics according to the machining factors during the slot machining of quartz using a cubic boron nitride (CBN) tool and to select the optimal machining conditions using the Taguchi method. The machining experiment was performed considering three process variables: the spindle speed, feed rate, and depth of cut. The cutting force and surface roughness were analyzed according to the processing conditions.

A study on wafer processing using backgrinding system

  • Seung-Yub Baek
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • Recently, there has been extensive research conducted on the miniaturization of semiconductors and the improvement of their integration to achieve high-quality and high-performance electronic devices. To integrate and miniaturize multiple semiconductors, thin and precise wafers are essential. The backgrinding process, which involves high-precision processing, is necessary to achieve this. The backgrinding system is used to grind and polish the back side of the wafer to reduce its thickness to ㎛ units. This enables the high integration and miniaturization of semiconductors and a flattening process to allow for detailed circuit design, ultimately leading to the production of IC chips. As the backgrinding system performs precision processing at the ㎛ unit, it is crucial to determine the stability of the equipment's rigidity. Additionally, the flatness and surface roughness of the processed wafer must be checked to confirm the processability of the backgrinding system. IIn this paper, the goal is to verify the processability of the back grinding system by analyzing the natural frequency and resonance frequency of the equipment through computer simulation and measuring and analyzing the flatness and surface roughness of wafers processed with backgrinding system. It was confirmed whether processing damage occurred due to vibration during the backgrinding process.

An Experimental Study on Heating Manufacture of Recycled Aggregate by Design of Experiment (실험계획법을 이용한 가열방식의 순환굵은골재 제조를 위한 실험적 연구)

  • Nam, Eun-Yong;Hwang, Sun-Bok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • The use of wasted concrete can settle the environmental pollution and shortage of natural aggregate. However, recycled aggregate includes substantial amount of cement paste, so that these aggregates are more porous, and less resistant to mechanical actions than natural aggregates. Recently, the new manufacturing processes of high quality recycled aggregates were suggested such as heating. In this paper, for the purpose of manufacture of high quality recycled aggregates, the heating processes was considered to the existing process of recycled aggregates. To find the optimum process, the experiment was performed through the statistical design of experiment. The heating temperatures of 4 levels (300, 450, 600 and $750^{\circ}C$) and heating duration time (5, 20, 40, 60minute) were main experimental variables. Through the test results, it was found that the optimum manufacturing condition of coarse recycled aggregate was evaluated to be $600^{\circ}C$ and 40minute.

  • PDF

An Experimental Study on the Compressive Strength of High Strength Concrete According to Testing Condition (시험조건과 고강도콘크리트의 압축강도 관계에 관한 실험적 연구)

  • Chin, Young-Gil;Lee, Yong-Su;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • The strength and durability of concrete are affected by various factors such as the quality of material, mixing ratio, construction, the method of cure, time elapsed. the condition of test and etc., it is very difficult to pre-estimate the strength of concrete with the use of experimental specimen. The domestic standard of specimen cylindrical type and its sizes are both l0cm$\times$20cm and 15cm$\times$30cm, which are prescribed in KS F2405, and the loading speed is prescribed to test with 2~3kgf/$\textrm{cm}^2$ per second. The loading speed should have great effect on the compressive strength, but in reality in the construction site sometimes the loading speed is applied so dubiously that the value of the compressive strength can be unreliable. And the cross sectional area of a specimen should be level and smooth, otherwise it can be broken at a lower stress than the real strength through the eccentric or intensive working of the load. Capping should be carried out in order to measure the strength correctly. And used for capping are various materials such as capping compound, cement glue, plaster, mechanical grinding and etc. In this study, therefore, I have carried out an experiment on the relationship among the loading speed, the ratio of height to diameter of specimen, the method of capping, and the compressive strength, for the efficient quality control of concrete structures. So this study has been purposed to provide some basic data that can be used effectively at construction sites.

Development of a Surface Roughness Measurement Method Using Reflected Laser Beam Image and Its Application (레이저광 반사 화상을 이용한 표면 거칠기 측정법의 개발과 적용)

  • Yun, Yun-Feng-Shen;Kim, haa-young;An, jung-hwan;Chi, ei-jon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.51-57
    • /
    • 2001
  • A light beam reflected from a machined surface generally containes information concerning about its surface roughness. This study examines and proposes a surface roughness measurement technique for on-machine measurement of machined surfaces. The technique is based on the measurement of a reflected laser beam pattern and the statistical analysis of its light intensity distribution. The surface roughness was found to be closely related to the standard deviation of the light intensity on the primary axis of the reflected pattern. An image acquisition device is made up of a laser diode, a half mirror, a screen, and a CCD camera. The exact image with the primary and secondary axes of a reflected laser beam pattern is calculated through such image processing algorithm as thresholding, edge detection, image rotation, segmentation, etc. A median filter and a surrounding light correction algorithm are improve the image quality and reduce the measuring error. Using the developed measuring device the effect of screen materials and workpiece and workpiece materials was investigated. Experimental results regarding to relatively high-quality surfaces machined by grinding, polishing, lapping processes have shown the measurement error is within 10% in the range of $0.1{mu}m~0.8{\mu}m R_q.$Therefore, the proposed method is thought to be effectively used when quick measurements is needed with workpieces fixed on the machine.

  • PDF

A Study on Performance Improvement of Whirling Machines (Whirling machine의 성능 개선을 위한 연구)

  • Lee Jung-Ki;Yang Woo-suk;Son Jea-seok;Han Hui-duck;Kim Han-soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1416-1429
    • /
    • 2005
  • In order to meet the increasing competitive pressures coupled with higher demands for component quality, whirling machines have been at the cutting edge of the automobile industry for more than 25 years. The hard whirling process can save on machining time and operation elimination. Hard whirling is done dry, without coolant. The chips carry away nearly all of the heat during cutting, leaving the workpiece cool and minimizing any thermal geometry variations. The surface finish and profile accuracy are close to grinding quality. Whirling machines usually consist of four major parts; 1) loading system that requires the necessary axial speeds, 2) head stock that needs high precision clamping and positioning system at the chuck and tailstock, 3) whirling unit that demands the high cutting speeds and cutting power fer cutting deep thread profiles and 4) unloading system that requires an easy workpiece unloading. Also, capabilities of the whirling machine can be improved by attaching a vision system to the machine. Most of whirling machines in Korean automobile industry are imported from the Leistritz company, Germany and the Hasegawa company, Japan. Tn this paper, a basic research will be performed to improve and enhance the existing whirling machines. Finally, a new Korean whirling machine will be proposed and developed.

Quality Characteristics and Antioxidant Activity of Espresso Coffee Prepared with Green Bean Fermented by Lactic Acid Bacteria (유산균 발효 생두를 이용한 에스프레소 커피의 품질 특성 및 항산화 활성)

  • Kim, Dong-Ho;Yeon, Soo-Ji;Jang, Keum-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1799-1807
    • /
    • 2016
  • This study investigated the quality characteristics and antioxidant activities of espresso coffee prepared with green bean fermented by lactic acid bacteria. First, 10, 20, and 30% (w/v) green beans were fermented by Lactobacillus acidophilus KCTC 3145 at $37^{\circ}C$ for 0, 12, and 24 h, respectively. Cells of L. acidophilus gradually increased with increasing green bean content and fermentation time. After drying fermented green beans, coffee powders were prepared by roasting (city level) and grinding (<75 mesh). Then, espresso coffee was extracted using coffee powder. The pH and chromaticity (L*, a*, and b* values) of espresso coffee decreased with fermentation time, whereas total acidity, total soluble solid contents, and brown color intensity increased. The pH level decreased with increasing contents of fermented green bean and total acidity increased. However, chromaticity, total soluble solid contents, and brown color intensity remained within a limited range. The antioxidant activities, including total polyphenol content, and DPPH and ABTS radical scavenging activities increased with increasing green bean content and fermentation time. Finally, sensory evaluation -for taste, color, flavor, and overall preference- revealed espresso coffee prepared with fermentation of 30% (w/v) green bean received the highest scores. Green bean fermented by lactic acid bacteria enhanced quality characteristics and antioxidant activities of espresso coffee, showing that lactic acid bacteria fermentation has potential use in the espresso coffee industry.

Comparison of Quality Properties of Rice Cultivars for Beverage Processing (음료가공을 위한 쌀 품종별 품질 특성 비교)

  • Shin, Dong-Sun;Sim, Eun Yeong;Lee, Seuk Ki;Choi, Hye-Sun;Park, Ji-Young;Woo, Koan Sik;Kim, Hyun-Joo;Cho, Dong Hwa;Oh, Sea Kwan;Han, Sang Ik;Park, Hye-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1260-1267
    • /
    • 2017
  • The properties of rice were studied on five rice cultivars (Ilpumbyeo, Samkwang, Goami-4, Dodamssal, and Thai rice), and employed two kinds of saccharification treatment methods (treatment I : rice shape, treatment II: grinding rice shape). Thai rice showed differences in width and length when compared to other cultivars of rice, and the Goami 4 had the lowest thousand-grain weight. The Goami4 and Dodamssal each showed high contents of amylose and resistant starch, and the water absorption rate was close to maximum at 90 minutes as well as the highest level of Goami 4 at all times. The qualities of highest water-binding capacity, solubility and swelling power was most significant in Thai rice. The lowest hardness level of wet rice resulted in the lowest hydration-related characteristics. High amylose content rice, in particular, showed low sugar content and slightly increased sugar content as the saccharification process improved (treatment II). On the other hand, high amylose cultivars had the same high degree of hardness as boiled rice. From these results, the Dodamssal was found to have the lowest viscosity at all temperatures but highest viscosity during the saccharification process, suggesting it may be successfully implemented as a thickener in rice beverage processing. The purpose of this study was to attempt to provide basic data on the development of rice beverage manufacturing technology, based upon the quality characteristics related to beverage processing of rice cultivars.

Quality Characteristics of Rice Wort and Rice Beer by Rice Processing (쌀 가공처리에 따른 쌀 맥즙 및 쌀 맥주의 품질특성)

  • Park, Jiyoung;Lee, Seuk-Ki;Choi, Induck;Choi, Hye-Sun;Kim, Namgeol;Shin, Dong Sun;Jeong, Kwang-Ho;Park, Chang-Hwan;Oh, Sea-Kwan
    • Food Engineering Progress
    • /
    • v.23 no.4
    • /
    • pp.290-296
    • /
    • 2019
  • Rice in Korea is a highly valuable food resource that serves both as staple food and ingredient in various processed edibles. This study was conducted to explore pre-treatment methods for rice that result in good saccharification upon production of rice beer. When rice was subjected to fine grinding, steeping, roasting, gelatinizing, or puffing prior to saccharification with malt, wort containing puffed rice had the highest soluble solid content (°Bx). Upon production of wort without the addition of any enzymes for liquefaction or saccharification, the addition of 30% rice resulted in the highest soluble solid content (°Bx). Production of beer containing 10, 20, or 30% of either roasted or puffed rice showed that wort containing 30% puffed rice had the highest soluble solid content (15.4 °Bx) with good saccharification. The resulting beer likewise exhibited higher alcohol content (5.0-5.4%) than the beer that had roasted rice added, without the turbidity and with less bitterness. Therefore, rice puffing was considered a beneficial processing method to enhance rice saccharification and to facilitate both the production of fine quality beers and rice beer containing puffed rice.