• Title/Summary/Keyword: Grinding Center

Search Result 182, Processing Time 0.03 seconds

EVALUATION OF BIODEGRADABILITY, BIOCOMPATIBILITY AND TISSUE REGENERATIVE CAPACITY OF SYNTHETIC BIODEGRADABLE MEMBRANES IN BEAGLE DOGS (수종의 생분해성 차폐막의 생채분해도, 생채친화도 및 조직재생유도 능력에 관한 실험적 연구)

  • Seol, Y.J.;Kim, T.I.;Lee, J.I.;Bae, C.M.;Lee, S.J.;Chug, C.P.
    • Journal of Periodontal and Implant Science
    • /
    • v.25 no.3
    • /
    • pp.603-613
    • /
    • 1995
  • The purpose of this investigation was to evaluate on the biodegradability, biocompatibility and tissue regenerative capacity of synthetic bioabsorbable membranes in beagle dogs. For animal study, 9 adult beagle dogs were used to examination, on the surgical implantation of membranes and histological analysis. In each animal, the 3rd and 4th premolars of the both sides of the mandible were selected as test teeth. Two types of bioresorbable membranes including "Guidor membrane", "S-membranes" were used to examining for biological activity, and also Gore-tex membranes was used for positive control. Surgically created defects were made in 2 premolars of both sides of the mandible at $3{\times}4mm^2$ in size and tested membranes were implanted in the defected area. A plaque control regimen was instituted with daily tooth brushing with a 0.1% chlorhexidine digluconate during experimental periods. All the experimental animals were sacrificed after 2, 4, and 8 weeks from surgery and undecalcified slides were prepared using the "sawing and grinding" technique described by Donath and Breuner". In biodegradability, all the membranes were started their biodegradation from two weeks after implantation and gradually demolished of their frame morphology from eight weeks. However, demolition of membranes in 8 weeks after implantation was highest in Guidor membranes and followed by S-membranes. Biocompatibilityof two kinds of biodegradable membranes including Guidor and S-mambrane were shown to be well tolerated to the surrounding tissue, and were minimal accumulation of inflammatory cell infiltration around the implanted membranes to compare with Gore-tex membrane. Regeneration of defected alveolar bone was initiated from two weeks of membrane implantation and new bone formation was gradually increased from that time. However, pattern of new bone formation on the defected areas of two kinds of biodegrable membranes was almost similar and quite competitive comparing with Gore-tex membrane. These results implicate that bioresorbable membranes should be highly useful tool for guided tissue regeneration of periodontal defects.

  • PDF

Influence of the homogenizing grade and meathematical treatment on the determination of ground beef components with near infrared reflectance spectroscopy (식품의 근적외선 반사분광분석법에서 균질의 정도가 흡광도에 미치는 영향 및 수학적 처리방법에 관한 연구)

  • Oh, Eun-Kyong;Grossklaus, Dieter
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.408-413
    • /
    • 1992
  • This study was conducted to determine the effect of the homogenizing grade of sample on absorbance of near infrared reflectance spectrophotometer with which chemical compositions of food were rapidly and effectively analyzed. By the mathematical treatment of absorbance values standard error of prediction was reduced as follows. 1. The absorbance values of various samples ground for the same periods of time were calibrated before or after treatment with first or second derivative in an attempt to accurately predict the components of samples ground for the different periods of time. The standard error of prediction for moisture content were 1.478%, 0.658% and 0.580%, respectively, those for fat content 0.949%, 0.637% and 0.527%, respectively, and those for protein content 0.514%, 0.493% and 0.394%, respectively. Calibration of absorbance values after second derivative treatment showed the highest accuracy in predicting sample components. 2. The absorbance values of various samples ground for the different periods of time were calibrated before or after treatment with first or second derivative in order to accurately predict the components of samples ground for the different periods of time. The standard error of prediction for moisture content were 1.026%, 0.589% and 0.568%, respectively, and those for protein content 0.860%, 0.557% and 0.399%, respectively. The standard error of prediction were lower in the order of calibrations before and after first and second derivative treatments. As a result, calibration of absorbance values after second derivative treatment showed higher accuracy regardless of grinding time of samples.

  • PDF

Thermoelectric Properties of the 0.05wt% $SbI_3$-Doped n-Type $Bi_2({Te_{0.95}}{Se_{0.05}})_3$ Alloy with Variation of the Annealing Time (0.05wt% $SbI_3$를 첨가한 n형 $Bi_2({Te_{0.95}}{Se_{0.05}})_3$ 가압소결체의 열처리 시간에 따른 열전특성)

  • Lee, Sun-Kyong;Oh, Tae-Sung;Hyun, Dow-Bin
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.257-263
    • /
    • 2000
  • Thermoelectric properties of the 0.05wt% $SbI_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy, prepared by melting/grinding and hot pressing, were investigated with variation of the annealing time up to 36 hours. The electron concentration of the 0.05wt% SbI$_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy decreased with increasing the annealing time. The figure-of-merit of the 0.05wt% $SbI_3$-doped n-type $Bi_2(Te_{0.95}Se_{0.05})_3$ alloy was improved from $2.1{\times}10^{-3}/K$ to $2.35{\times}10^{-3}/K$ by annealing at $500^{\circ}C$ for 3 hours. When annealed longer than 12 hours, however, the figure-of-merit decreased substantially due to the increase of the electrical resistivity.

  • PDF

Breakage and Liberation Characteristics of Iron Ore from Shinyemi Mine by Ball Mill (신예미 광산 철광석의 볼밀 분쇄 및 단체분리 특성 연구)

  • Lee, Donwoo;Kwon, Jihoe;Kim, Kwanho;Cho, Heechan
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.11-23
    • /
    • 2020
  • This study aims to investigate breakage and liberation characteristics of iron ore from Shinyemi mine, Jeongseon by ball mill. Parameters of breakage functions for three grade samples of iron ore were obtained using single-sized-feed breakage test and back-calculation based on nonlinear programming. The results showed that with the increase in the grade of iron ore, the breakage rate factor decrease whereas the particle size sensitivity decreases. This results from retardation of microcrack-propagation by magnetite grain in the ore. Breakage distribution analysis showed that the breakage mechanism appear to be impact fracture dominant with the increase of grade owing to the stress distribution effect by magnetite grain. Degree of liberation (DOL) increased with the increase in grade and decrease in particle size, respectively. Using the breakage function and size-DOL relationship, a model that can predict time-dependent-DOL is established. When scale-up factors from operating condition are available, the model is expected to be capable of predicting size and DOL with time in actual mining process.

The Widening of Fault Gouge Zone: An Example from Yangbuk-myeon, Gyeongju city, Korea (단층비지대의 성장: 경주시 양북면 부근의 사례)

  • Chang, Tae-Woo;Jang, Yun-Deuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • A fault gouge zone which is about 25cm thick crops out along a small valley in Yangbuk-myeon, Gyeongju city. It is divided into greenish brown gouge and bluish gray gouge by color. Under the microscope, the gouges have a lot of porphyroclasts composed of old gouge fragments, quartz, feldspar and iron minerals. Clay minerals are abundant in matrix, defining strikingly P foliation by preferred orientation. Microstructural differences between bluish pay gouge and greenish brown gouge are as follows: greenish brown gouge compared to bluish gray gouge is (1) rich in clay minerals, (2) small in size and number of porphyroclasts, and (3) plentiful in iron minerals which are mostly hematites, while chiefly pyrites in bluish gray gouge. Hematites are considered to be altered from pyrites in the early-formed greenish brown gouge under the influence of hydrothermal fluids accompanied during the formation of bluish gray gouge that also precipitated pyrites. It is believed that the fault core including bluish gray gouge zone and greenish brown gouge zone was formed by progressive cataclastic flow. In the first stage the fault core initiates from damage zone of early faulting. In the second stage damage zone actively transforms into breccia zone by repeated fracturing. The third stage includes greenish brown (old) gouge formation in the center of the fault core mainly by particle grinding. In the third stage further deformation leads to the formation of new (bluish gray) gouge zone while old gouge zone undergoes strain hardening. Consequently, the whole gouge zone in the core widens.

Evaluation of the Level of Microbial Contamination in the Manufacturing and Processing Company of Red Pepper Powder (고춧가루 제조.가공업체의 시설 및 공정별 미생물학적 오염도 평가)

  • Woo, Hye-Im;Kim, Jong-Bae;Choi, Ji-Hee;Kim, Eun-Hye;Kim, Dong-Sul;Park, Kun-Sang;Kim, Eun-Jeong;Eun, Jong-Bang;Om, Ae-Son
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.427-431
    • /
    • 2012
  • This study was conducted to monitor and evaluate microbial contamination during manufacturing process in 6 red pepper powder factories. Red pepper powder samples were taken from manufacturing facilitates, working area and workers' hands to determine sanitary indicator bacteria (SIB) such as aerobic bacteria and coliform group as well as pathogenic indicator bacteria (PIB) such as Staphylococcus aureus, E.coli, Salmonella spp., Listeria monocytogenes, and Bacillus cereus. The results indicated that SIB in primary materials was detected as low as 3 log units and E.coil and Staphylococcus aureus of PIB were detected. After grinding process, aerobic bacteria, fungi, and coliform group increased 52% and 108%, respectively. In final products, PIB was not detected except for one found Staphylococcus aureus by which workers' hands were contaminated. Moreover, UV detectors in all the manufacturers were not able to reduce bacteria. Thus, this data suggest that a stringent safety management be needed to prevent cross contamination, and also reconsider effectiveness of facility.

A REVIEW ON THE ODSCC OF STEAM GENERATOR TUBES IN KOREAN NPPS

  • Chung, Hansub;Kim, Hong-Deok;Oh, Seungjin;Boo, Myung Hwan;Na, Kyung-Hwan;Yun, Eunsup;Kang, Yong-Seok;Kim, Wang-Bae;Lee, Jae Gon;Kim, Dong-Jin;Kim, Hong Pyo
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.513-522
    • /
    • 2013
  • The ODSCC detected in the TSP position of Ulchin 3&4 SGs are typical ODSCC of Alloy 600MA tubes. The causative chemical environment is formed by concentration of impurities inside the occluded region formed by the tube surface, egg crate strips, and sludge deposit there. Most cracks are detected at or near the line contacts between the tube surface and the egg crate strips. The region of dense crack population, as defined as between $4^{th}$ and $9^{th}$ TSPs, and near the center of hot leg hemisphere plane, coincided well with the region of preferential sludge deposition as defined by thermal hydraulics calculation using SGAP computer code. The cracks developed homogeneously in a wide range of SGs, so that the number of cracks detected each outage increased very rapidly since the first detection in the $8^{th}$ refueling outage. The root cause assessment focused on investigation of the difference in microstructure and manufacturing residual stress in order to reveal the cause of different susceptibilities to ODSCC among identical six units. The manufacturing residual stress as measured by XRD on OD surface and by split tube method indicated that the high residual stress of Alloy 600MA tube played a critical role in developing ODSCC. The level of residual stress showed substantial variations among the six units depending on details of straightening and OD grinding processes. Youngwang 3&4 tubes are less susceptible to ODSCC than U3 and U4 tubes because semi-continuous coarse chromium carbides are formed along the grain boundary of Y3&4 tubes, while there are finer less continuous chromium carbides in U3 and U4. The different carbide morphology is caused by the difference in cooling rate after mill anneal. There is a possibility that high chromium content in the Y3&4 tubes, still within the allowable range of Alloy 600, has made some contribution to the improved resistance to ODSCC. It is anticipated that ODSCC in Y5&6 SGs will be retarded more considerably than U3 SGs since the manufacturing residual stress in Y5&6 tubes is substantially lower than in U3 tubes, while the microstructure is similar with each other.

Development of Mineral Admixture for Concrete Using Spent Coffee Grounds (커피찌꺼기를 활용한 콘크리트 혼화재의 개발)

  • Kim, Sung-Bae;Lee, Jae-Won;Choi, Yoon-Suk
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.185-194
    • /
    • 2022
  • Coffee is one of the most consumed beverages in the world and is the second largest traded commodity after petroleum. Due to the great demand of this product, large amounts of waste is generated in the coffee industry, which are toxic and represent serious environmental problems. This study aims to study the possibility of recycling spent coffee grounds (SCG) as a mineral admixture by replacing the cement in the manufacturing of concrete. To recycle the coffee g rounds, the SCG was dried to remove moisture and fired in a kiln at 850 ℃ for 8 hours. Carbonized coffee grounds are produced as coffee grounds ash (CGA) through ball mill grinding. The chemical composition of the prepared coffee grounds ash was investigated using X-ray fluorescence (XFR). According to the chemical composition analysis, the major elements of coffee grounds ash are K2O(51.74 %), CaO(15.92 %), P2O5(14.39 %), MgO(7.74 %) and SO3(6.89 %), with small amounts of F2O3(0.66 %), SiO2(0.59 %) and Al2O3(0.31 %) content. To evaluate quality and mechanical properties, substitutions of 5, 10, and 15 wt.% of coffee grounds ash (CGA) were tested. From the quality test results, the 28-day activity index of CGA5 reached 80 %, and the flow value ratio reached 96 %, which is comparable to the minimum requirement for second-grade FA. From the test results of the mortar, the optimal results have been found in specimens with 5 wt-% coffee grounds ash, showing good mechanical and physical properties.

Environmental Impact Evaluation of Mechanical Seal Manufacturing Process by Utilizing Recycled Silicon from End-of-Life PV Module (태양광 폐모듈 실리콘을 재활용한 메커니컬 실 제조공정의 환경성평가)

  • Shin, Byung-Chul;Shin, Ji-Won;Kwon, Woo-Teck;Choi, Joon-Chul;Sun, Ju-Hyeong;Jang, Geun-Yong
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.203-209
    • /
    • 2022
  • An environmental evaluation was conducted by employing LCA methodology for a mechanical seal manufacturing process that uses recycled silicon recovered from end-of-cycle PV modules. The recycled silicon was purified and reacted with carbon to synthesize β-SiC particles. Then the particles underwent compression molding, calcination and heat treatment to produce a product. Field data were collected and the potential environmental impacts of each stage were calculated using the LCI DB of the Ministry of Environment. The assessment was based on 6 categories, which were abiotic resource depletion, acidification, eutrophication, global warming, ozone depletion and photochemical oxidant creation. The environmental impacts by category were 45 kg CO2 for global warming and 2.23 kg C2H4 for photochemical oxide creation, and the overall environmental impact by photochemical oxide creation, resource depletion and global warming had a high contribution of 98.7% based on weighted analysis. The wet process of fine grinding and mixing the raw silicon and carbon, and SiC granulation were major factors that caused the environmental impacts. These impacts need to be reduced by converting to a dry process and using a system to recover and reuse the solvent emitted to the atmosphere. It was analyzed that the environmental impacts of resource depletion and global warming decreased by 53.9% and 60.7%, respectively, by recycling silicon from end-of-cycle PV modules. Weighted analysis showed that the overall environmental impact decreased by 27%, and the LCA analysis confirmed that recycling waste modules could be a major means of resource saving and realizing carbon neutrality.

Effect of Limestone Fineness on Physical Properties and Environmental Impact of Cement (석회석의 분말도가 시멘트의 물리적 특성 및 환경에 미치는 영향)

  • In-Gyu Kang;Jin-Man Kim;Sang-Chul Shin;Geon-Woo Kim;Tae-Yun An
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.82-93
    • /
    • 2024
  • Since the cement industry generates more than 60 % of CO2 during the clinker production process, supplementary cementitious materials are used worldwide to reduce CO2 efficiently. Mainly used supplementary cementitious materials such as blast furnace slag and fly ash, which are used in various industries including the cement industry, concrete admixtures, and ground solidification materials. However, since their availability is expected to decrease in the future according to the carbon neutrality strategy of each industry, new supplementary cementitious materials should be used to achieve the cement industry's goal for increasing the additive content of Portland cement. Limestone is a material that already has a large amount in the cement industry and has the advantage of high grinding efficiency, so overseas developed countries established Portland limestone cement standards and succeeded in commercialization. This study was an experimental study conducted to evaluate the possibility of utilizing domestic PLC, the effect of fineness and replacement ratio on the physical properties of cement was investigated, and the environmental impact of cement was evaluated by analyzing CO2 emissions.