• Title/Summary/Keyword: Grinding Accuracy

Search Result 170, Processing Time 0.025 seconds

Minimization of Hydrodynamic Pressure Effect on the Ultraprecision Mirror Grinding

  • Lee, Sun-Kyu;Miyamoto, Yuji;Kuriyahawa, Tsunemoto;Syoji, Katsuo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.59-64
    • /
    • 2005
  • This paper describes an investigation about the fluid delivering method that minimizes the generation of hydrodynamic pressure and improves the grinding accuracy. Traditionally, grinding fluid is delivered for the purpose of cooling, chip flushing and lubrication. Hence, a number of conventional investigations are focused on the delivering method to maximize fluid flux into the contact arc between the grinding wheel and the work piece. It is already known that hydrodynamic pressure generates due to this fluid flux, and that it affects the overall grinding resistance and machining accuracy. Especially in the ultra-precision mirror grinding process that requires extremely small amount of cut per pass, its influence on the machining accuracy becomes more significant. Therefore, in this paper, a new delivering method of grinding fluid is proposed with focus on minimizing the hydrodynamic pressure effect. Experimental data indicates that the proposed method is effective not only to minimize the hydrodynamic pressure but also to improve the machining accuracy.

Prediction of Form Accuracy during Traverse Grinding of Slender Workpiece Using the Cylindrical Prunge Grinding Data (원통연삭 실험자료를 이용한 트래버스 연삭공정중의 형상예측)

  • 박철우;이상조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.3
    • /
    • pp.174-183
    • /
    • 2000
  • Non-Parallelism the axial direction occurs during grinding process of long slender shafts. The reason for the axial error is due to elastic deformation of the components, accumulation phenomenon of the grinding and wheel wear during the grinding process. The accumulation phenomenon, the size generation mechanism and the wheel wear process during traverse grinding result in complicated process at each step on the wheel surface. The grinding system stiffness obtained from the stiffness of the center on the tailstock and the workpiece varing according to the relative position of the wheel and the workpiece. Further more, the value of wheel wear increases as the grinding process advances. The above mentioned issues make the shape generation process during traverse grinding quite complicated. This research analyzes the shape generation process in the direction of the work spindle. First, the formulation of the grinding system stiffness was conducted and the simulation analysis method of the traverse grinding was established. Also, a measuring system for assessing the dimensinal accuracy of the workpiece has been developed.

  • PDF

Effect of Thermal Deformation in Electromagnetic Chuck on the Grinding Accuracy (마그네틱 척의 열변형이 연삭 가공 정밀도에 미치는 영향)

  • 이찬홍;한진욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.44-48
    • /
    • 1996
  • This paper describes the effects of thermal deformation in electromagnetic chuck on the grinding accuracy. Gringing process is the last machining process and decisive in saving past other machining cost. The thermal deformation of grinding machine is unavoidable and affect seriously ginding accuracy. The thermaldeformation of electromagnetic chuck is one of important thermal problems. Heat generation of magnetic chuck is analyzed and measured. The temperature disturibution in chuck is elliptical form with high temperature in center of chuck. The thermal deformation form of chuck is changed with time to mountain form. The grinding experiment shows that the thermal deformation of magnetic chuck influence strongly machining accuracy as much as the headstock

  • PDF

A Sutdy on Improvement of Geomeric Accuracy by using Fuzzy Algorithm in Surface Grinding (퍼지 알고리즘을 이용한 평면연삭의 형상정도 향상에 관한 연구)

  • 천우진;김남경;하만경;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.149-154
    • /
    • 1993
  • In heavy grinding that is on of the high efficient grinding method, meaningful deformation is generated by high temperature. So, after machining, geomeric error generated od the workpiece. The most important factor on the geometric error is temperature difference between upper layer and lower layer (T $_{d}$) . Relations between Td and grinding condition and maximum geometric error and grinding condition are obtained by experiment. This relations are used in fuzzy algorithm for improvement geometric accuracy. The main results are follows : (1) The linear relation between maximum geometric error and grinding condition is ovtained by experiment. (2) The linear relation between maximum temperature difference between upper layer and lower layer and grinding condition is ovtained by experiment. (3) Control peth of wheel for improvement geometric accuracy is obtained by using the fuzzy algorithm.m.

  • PDF

The Improvement of Form Accuracy by High Pressure Air Jet in Slot Grinding (미세홈 가공시 고압공기분사에 의한 형상정밀도의 향상)

  • Lee, Seok-U;Lee, Yong-Chan;Jeong, Hae-Do;Choe, Heon-Jong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.68-74
    • /
    • 1999
  • One of the recent changes in machining technology is rapid application of micro- and high precision grinding processes. A fine groove generation is necessary for the fabrication of optic, electronic and semiconductor parts, and achieved by chemical or mechanical processes. Slot grinding is very efficient for the generation of micro ordered groove with hard and brittle materials. As slot grinding is continuous, the ground depth become gradually shallow because of wheel wear. The form accuracy become worse from the increase of ground slot width by the loading phenomena at wheel side, results on chipping damage of the workpiece. The experiments achieve to the enhancement of the form accuracy and chipping free of the brittle materials using V shaped cast iron bonded diamond wheels. In this study we focused on the investigation of the effect of the high pressure air jet on the grinding characteristics. As a results, we found that the high pressure air jet is very effective on the reductions of the wheel wear, enhancement of the form accuracy.

  • PDF

Evaluation on the Optimum Grinding of Aspheric Surface Micro Lens for Camera Phone (휴대폰 카메라용 비구면 마이크로 렌즈 최적 연삭가공 평가)

  • Baek Seung-Yub;Lee Eun-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.2
    • /
    • pp.1-9
    • /
    • 2006
  • As consumers in optics, electronics, aerospace and electronics industry grow, the demand for ultra-precision aspheric surface lens increases higher. To enhance the precision and productivity of ultra precision aspheric surface micro lens, the development of ultra-precision grinding system and process for the aspheric surface micro lens are described. In the work reported in this paper, an ultra-precision grinding system for manufacturing the aspheric surface micro lens was developed by considering the factors affecting the ground surface roughness and profile accuracy. This paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. The optimization of grinding conditions on ground surface roughness and profiles accuracy is investigated using the design of experiments.

Improvement of Geometric Accuracy Using Constant Force Control (정연삭력 제어를 이용한 형상정도 향상)

  • 김동식;김강석;홍순익;김남경;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.157-161
    • /
    • 1996
  • In the geometric accuracy, most of studies have been concentrated on the analysis of the geometric error, or a control path of grinding using the value of measured geometric error. In this paper, by using the value of measured motor current through hall sensor, detection of the geometric error have been accomplished, and in-process control path of grinding for improvement geometric accuracy, too.

  • PDF

A study on the internal high-speed grinding (고속 내면 연소에 관한 연구)

  • An, Sang-Ook;Inasaki, Ichiro
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.190-196
    • /
    • 1993
  • Internal high speed grinding under several high grinding wheel speed condition has been performed in this study for the effects have analyzed and compared with the grinding power, grinding tangential force and accuracy of surface with the carbon tool steel(SK3). The following results have been obtained: (1) Under the workpiece speed constant condition, increasing the grinding speed, the tangential force is decreased, and on the contrary, accuracy of surface is improved. (2) Under the speed ratio (V$_{w}$/V$_{s}$) contant condition it is possible to increase the high machining efficiency constraint to tangential grinding force constant.ant.

  • PDF

Performance Estimation of Feeding System for developing coaxial grinding system of light communicative ferrule (광통신용 페룰 가공을 위한 초미세 고기능 동축가공 연삭시스템용 이송계의 특성 평가)

  • Ahn K.J.;Choe B.O.;Lee H.J.;Hwang C.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.10-14
    • /
    • 2005
  • This report deals with a feeding system of the Coaxal grinding machine, processing optical ferrule. This report also examines the applicability of using the feeding system for the Coaxial grinding machine, by mean of conducting performance estimation. The results are as follow; Repeatability of regulating wheel is $17{\mu}m$, R/W rotation accuracy is between $30\;\~\;40{\mu}m$. This means 'Rotation accuracy' is lower than the concentricity level. Backlash generation level at the feeding system of the grinding wheel is under $1{\mu}m$, thereby positioning accuracy is controlled within $2{\mu}m$ In terms of repeatability, you can find occasional error at the returning process from the starting point. This error is resulted from the measurement tolerance of the starting point sensor. We will get the repeatability level under control by $1{\mu}m$, through improving the soft-ware used and up-grading the sensor at the starting point.

  • PDF

A study on the chucking system in coaxial grinding of ferrule (페룰 동축 연삭시 척킹 시스템에 관한 연구)

  • Kim, Dong-Kil;Lee, Sang-Jo;Ahn, Geon-Jun;Kwak, Chol-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.987-991
    • /
    • 2003
  • Ferrule is widely used as fiber optic connecters. In fiber-optic communications, the shape accuracy such as coaxiality and cylindricity of ferrule affects insertion loss. When coaxial grinding of ferrule supported by two pin, pin alignment and chucking accuracy are very important. In this research, the kinematic behavior of the ferrule center is investigated in the case where cone-shaped center pins and round circle holes which make contact with each other near the edge of the holes, using homeogenous coordinate transformation and numerical analysis. The obtained results are as follows: The alignment errors between center holes cause a sinusoidal displacement of ferrule. And the maximum displacement of ferrule centers increase in proportion to the center pin angle. The relationship between center pins displacement in coaxial grinding and grinding accuracy was explained.

  • PDF