• 제목/요약/키워드: Grillage design

검색결과 35건 처리시간 0.024초

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

소성해석법의 선체 GRILLAGE 설계에의 응용 (Application of Plastic Analysis Method to Ship Grillage Design)

  • 김기성;신승욱
    • 대한조선학회논문집
    • /
    • 제47권6호
    • /
    • pp.792-802
    • /
    • 2010
  • A plastic analysis method is commonly used in ship and offshore structural system to utilize the ultimate strength. In this paper, the basic principle of plastic analysis method is applied to ship grillages such as transverse oil-tight bulkheads. The main emphasis is placed on the optimum arrangement of grillage system to give minimum weight. Additional parametric study is carried out to find the effect of various arrangement of grillage system. The above methods are applied to oil-tight bulkhead design, and results are compared with the existing one.

다목적함수(多目的函數) 최적화(最適化) 기법(技法)에 의한 격자형(格子型) 구조물(構造物)의 최적설계(最適設計) (Computer-Aided Optimal Grillage Design by Multiple Objective Programming Method)

  • 임상전;양영순
    • 대한조선학회지
    • /
    • 제25권1호
    • /
    • pp.11-20
    • /
    • 1988
  • From the engineering point of view, a synthesis as well as an analysis technique is explored to search for the improved design of grillage which is common in ship structure. As an approximate analysis method for the grillage, an interaction reaction method is developed and compared with the finite element method. It is found that the discrepancy between these two methods is so negligible that the percent method could be used effectively for the grillage analysis. As an optimization technique, a feasible direction method could be used is combined with the intersection reaction method in order to design a minimum weight optimal grillage. The feasible direction method shows a good numerical performance although it requires more calculation times compared with the direct search method. Finally, the application of multiple objective optimization method to grillage is investigated in order to resolve conflicts existed between the multiple objectives which is a common characteristic of structure design problem. Goal programming method is extended to handle a nonlinear property of constraints and objective functions. It seems that the nonlinear goal programming could help not only to establish a relative importance of each objective, but also enable the designer to choose the best combination of design variables.

  • PDF

Optimum parameterization in grillage design under a worst point load

  • Kim Yun-Young;Ko Jae-Yang
    • 한국항해항만학회지
    • /
    • 제30권2호
    • /
    • pp.137-143
    • /
    • 2006
  • The optimum grillage design belongs to nonlinear constrained optimization problem. The determination of beam scantlings for the grillage structure is a very crucial matter out of whole structural design process. The performance of optimization methods, based on penalty functions, is highly problem-dependent and many methods require additional tuning of some variables. This additional tuning is the influences of penalty coefficient, which depend strongly on the degree of constraint violation. Moreover, Binary-coded Genetic Algorithm (BGA) meets certain difficulties when dealing with continuous and/or discrete search spaces with large dimensions. With the above reasons, Real-coded Micro-Genetic Algorithm ($R{\mu}GA$) is proposed to find the optimum beam scantlings of the grillage structure without handling any of penalty functions. $R{\mu}GA$ can help in avoiding the premature convergence and search for global solution-spaces, because of its wide spread applicability, global perspective and inherent parallelism. Direct stiffness method is used as a numerical tool for the grillage analysis. In optimization study to find minimum weight, sensitivity study is carried out with varying beam configurations. From the simulation results, it has been concluded that the proposed $R{\mu}GA$ is an effective optimization tool for solving continuous and/or discrete nonlinear real-world optimization problems.

PSC 거더교의 하중횡분배에 관한 연구 (Lateral Load Distribution for Prestressed Concrete Girder Bridge)

  • 박문호;박정활;김진규
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.157-166
    • /
    • 2001
  • The purpose of this study is to examine the accuracy of the code provisions on lateral load distribution factors of prestressed concrete girder bridges. Most designers in Korea use the lever method or lateral load distribution formula in the existing design codes. However, the methods do not account for the effect of bridge skew or direction of diaphragm. Therefore, this study analysed the prestressed concrete girder bridge with grillage model for various girder spacings, directions of diaphragms, span lengths, and skews, and compared the results with those of existing design code. It has been found that lateral load distribution factors were proportional to the girder spacing while they were not significantly affected by the change of span length, direction of diaphragm, and skew. For bending moments, lateral load distribution factors from the grillage analysis were 60%~68% of those from Korean bridge design code. Therefore, the code provisions result in very conservative design. For support reactions, however, lateral load distribution factors from the grillage analysis were slightly greater than those from Korean bridge design code. Therefore, the capacity of bearings of the bridge with a large skew should be determined by grillage analysis.

  • PDF

고유진동수 제한을 갖는 골조구조의 GA 기반 최적설계 시스템 (Optimal Design System of Grillage Structure under Constraint of Natural Frequency Based on Genetic Algorithm)

  • 김성찬;김병주;김이담
    • 대한조선학회논문집
    • /
    • 제59권1호
    • /
    • pp.39-45
    • /
    • 2022
  • Normal strategy of structure optimization procedure has been minimum cost or weight design. Minimum weight design satisfying an allowable stress has been used for the ship and offshore structure, but minimum cost design could be used for the case of high human cost. Natural frequency analysis and forced vibration one have been used for the strength estimation of marine structures. For the case of high precision experiment facilities in marine field, the structure has normally enough margin in allowable stress aspect and sometimes needs high natural frequency of structure to obtain very high precise experiment results. It is not easy to obtain a structure design with high natural frequency, since the natural frequency depend on the stiffness to mass ratio of the structure and increase of structural stiffness ordinary accompanies the increase of mass. It is further difficult at the grillage structure design using the profiles, because the properties of profiles are not continuous but discrete, and resource of profiles are limited at the design of grillage structure. In this paper, the grillage structure design system under the constraint of high natural frequency is introduced. The design system adopted genetic algorithm to realize optimization procedure and can be used at the design of the experimental facilities of marine field such as a towing carriage, PMM, test frame, measuring frame and rotating arm.

Grillage Method Applied to the Planning of Ship Docking

  • Kim, Sung Chan;Ryu, Cheolho;Lee, Jang Hyun;Lee, Kyung Seok
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권3호
    • /
    • pp.150-157
    • /
    • 2016
  • When blocks are supported on a dock, huge reaction forces concentrated at the supports cause structural damage owing to local stress concentrations. Thus, the supports should be arranged to avoid local failure from the reaction forces by redistributing those forces. Docking analyses to determine the proper blocks and their support arrangements are introduced so that the local stresses are minimized to warrant the safety of the docking supports. Local stresses enforced by the support arrangement should be evaluated by finite element analysis (FEA). However, it is difficult to consider an accurate 3D geometry of the blocks in the finite element model because the structural design information is too complicated to determine within several days using the FEA model. This paper presents a simplified FE model to evaluate the safety of the arrangement of supports using a simplified grillage element. The grillage element can be efficiently used to obrain the reaction forces in docking analysis becasuse the reaction forces at the supports are enough to assess the safety of block. Since a simplified grillage model of the entire ship cannot accurately calculate the local stresses, an optimized modeling method based on the grillage element was introduced. The local reaction forces obtained by the proposed approach and three-dimensional FEA were discussed for typical types of ships. It is shown that the reaction forces obtained by the present grillage model are in reasonably good agreement with the FEA model.

골조구조 해석과 판 요소 해석의 결합을 활용한 개구부 강도평가 시스템 개발 (Development of Strength Evaluation System Using the Combined Grillage and Shell Element for the Strength around the Opening)

  • 김성찬;이경석;송재영;김경수
    • 대한조선학회논문집
    • /
    • 제44권6호
    • /
    • pp.605-611
    • /
    • 2007
  • A ship is composed of many grillage structures especially the deck which is consists of primary girders, transverse and longitudinal members. Several holes are arranged on these primary members for pipes, vents, etc. which cause stress concentration due to the discontinuity of the member. It is not easy to get the stress values around all these holes because of the huge amount of time necessary for computations. In this paper, a simple method to compute for the stress around the holes is suggested. This method is composed of two steps which are grillage analysis for primary members and detailed stress analysis using the results of the grillage analysis. This method is made for the design of the primary members with openings supporting the deck structure.

컨테이너선 Bottom Floor 두께 최적화에 대한 연구 (A Study on Thickness Optimization of Bottom Floor for Container Ship)

  • 이아미;유영웅;이준혁;유영규
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2011년도 특별논문집
    • /
    • pp.95-100
    • /
    • 2011
  • In general, thickness of bottom floor in fore/aft cargo hold region for container ship has been determined based on FEM analysis result of mid cargo hold region. But this approach has room for improvement because section shape and frame spacing in fore/aft cargo hold of container ship are quietly different from those of mid cargo hold. From this study, correlation between FEM result and grillage analysis result has been investigated and simple method for thickness determination of bottom floor in fore/aft cargo hold using newly improved grillage analysis is proposed.

  • PDF