• Title/Summary/Keyword: Grillage Analysis

Search Result 48, Processing Time 0.022 seconds

A Study on the Optimum Structural Design of High Speed Ships with Twin Hulls (쌍동형 초고속선의 최적 구조 설계에 관한 연구)

  • C.D. Jang;S.I. Seo;S.K. Kim;J.O. Kwon;S.D. Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.109-118
    • /
    • 1994
  • In this study, an optimization method to design the hull structure of the surface effect ships with twin hulls is proposed for the purpose of minimization of weight based on the regulations of DnV class, and computer programs following the method are developed. The method uses simple formulas as to bending and buckling strength of beams and plates to design local structures, and considers the effect of interaction between longitudinal girders and transverse web frames by grillage analysis and calculates torsional strength of the cross structure by the simplified method. Global optimization of the midship section is attained by integration of optimized substructures. According to optimized results by applying the method to the designed ship, reduction of 20 percent of hull weight can be shown, and optimum transverse frame space can be obtained.

  • PDF

A Study on the Ultimate Strength Behavior according to Modeling Range at the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park Jo-Shin;Ko Jae-Yong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.11a
    • /
    • pp.137-141
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used. On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of large merchant ship structures. For FEA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

A Study on the Disposition of Cross Beams in Composite Plate Girder Bridge (강합성 플레이트거더교의 가로보 배치에 관한 연구)

  • Park, Yong Myung;Baek, Seung Yong;Hwang, Min Oh
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.691-699
    • /
    • 2002
  • A study on the evaluationof the proper spacing and required bending rigidity of cross beams in composite multiple I-girder bridge without lateral and sway bracing system was performed. For the purpose, a two-lane 40m simple span and 40+50+40m continuous sample bridge with four girders was designed. For the sample bridges, structural analysis under the design loads including dead load before and after composite, live load, and seismic loads has been performed. The material and geometric nonlinear analysis under dead load before composite has also been performed to evaluate lateral buckling strength of the steel-girder-cross beam grillage. Based on the two phase anlayses, proper spacing and bending righidity of cross beams were proposed.

A Study on the Optimum Structural Design of Naval Vessels (함정의 최적 구조 설계에 관한 연구)

  • Seung-Il Seo;Keon-Ho Son;Myung-Kyu Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.100-112
    • /
    • 2002
  • Naval vessels are not regulated by the class rules, but by the special regulations. This study introduces the concept and characteristics of the regulations of U.S. Navy which has been the most reliable standards in design of naval vessels in Korea, and intends to help designers to comprehend the effect of each regulation on design results. Also, an optimum structural design method combined with the structural analysis theory is proposed for naval vessels following the regulations of U.S. Navy and is applied to the design of a naval vessel. After application of the optimum design method, its validity is shown and an optimum design of midship section is obtained. In addition, the optimum spaces or longitudinals and transverse web frames are found and the effect of main design variables can be investigated.

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Effect of Stiffener's Web Height against Axial Compression Ultimate Strength Considering Lateral Pressure Load (횡하중을 고려한 압축최종강도에 대한 보강재 치수의 영향)

  • Oh, Young-Cheol;Ko, Jae-Yong;Oh, Dong-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 2008
  • Stiffened panels are basic strength members which have been used widely in a vessel or an offshore. They have been used often a deck, a side and a bottom structure of ship and have a number of one sided stiffener in either one or both directions called grillage. Their buckling and plastic collapse become damaged reason of the hull girder so it needs to investigate accurately buckling and ultimate strength of stiffened panels. In the present paper, using the ANSYS, a commercial finite element analysis code, we conducted the evaluation regarding buckling and post-buckling behaviour of stiffened panels, and analyzed stiffener's web height change, considering the effect of lateral pressure load against compression ultimate strength.

  • PDF

A Study on the Ultimate Strength Behavior according to Modeling Range of the Stiffened Plate (선체보강판의 모델링범위에 따른 최종강도거동에 관한 연구)

  • Park, Joo-Shin;Ko, Jae-Yong;Park, Sung-Hyeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.10 no.2 s.21
    • /
    • pp.35-39
    • /
    • 2004
  • Ship structures are basically an assembly of plate elements and the load-carrying capacity or the ultimate strength is one of the most important criteria for safety assessment and economic design. Also, Structural elements making up ship plated structures do not work separately, resulting in high degree of redundancy and complexity, in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed simplifications or idealizations must essentially be made considering the accuracy needed and the degree of complexity of the analysis to be used On this study, to investigate effect of modeling range, the finite element method are used and their results are compared varying the analysis ranges. The model has been selected from bottom panels of merchant ship structures. For FHA, three types of structural modeling are adopted in terms of the extent of the analysis. The purpose of the present study is to numerically calculate the characteristics of ultimate strength behavior according to the analysis ranges of stiffened panels subject to uniaxial compressive loads.

  • PDF

Negative Support Reactions of the Single Span Twin-Steel Box Girder Curved Bridges with Skew Angles (단경간 2련 강박스 거더 곡선교의 사각에 따른 부반력 특성)

  • Park, Chang Min;Lee, Hyung Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.34-43
    • /
    • 2012
  • The behaviors of the curved bridges which has been constructed in the RAMP or Interchange are very complicate and different than orthogonal bridges according to the variations of radius of curvature, skew angle and spacing of shoes. Occasionally, the camber of girder and negative reactions can be occurred due to bending and torsional moment. In this study, the effects on the negative reaction in the curved bridge were investigated on the basis of design variables such as radius of curvature, skew angle, and spacing of shoes. For this study, the twin-steel box girder curved bridge with single span which is applicable for the RAMP bridges with span length(L) of 50.0m and width of 9.0m was chosen and the structural analysis to calculate the reactions was conducted using 3-dimensional equivalent grillage system. The value of negative reaction in curved bridges depends on the plan structures of bridges, the formations of structural systems, and the boundary conditions of bearing, so, radius of curvature, skew angle, and spacing of shoes among of design variables were chosen as the parameter and the load combination according to the design standard were considered. According to the results of numerical analysis, the negative reaction in curved bridge increased with an decrease of radius of curvature, skew angle, and spacing of shoes, respectively. Also, in case of skew angle of $60^{\circ}$ the negative reaction has been always occurred without regard to ${\theta}/B$, and in case of skew angle of $75^{\circ}$ the negative reaction hasn't been occurred in ${\theta}/B$ below 0.27 with the radius of curvature of 180m and in ${\theta}/B$ below 0.32 with the radius of curvature of 250m, and in case of skew angle of $90^{\circ}$ the negative reaction hasn't been occurred in the radius of curvature over 180m and in ${\theta}/B$ below 0.38 with the radius of curvature of 130m, The results from this study indicated that occurrence of negative reaction was related to design variables such as radius of curvature, skew angle, and spacing of shoes, and the problems with the stability including negative reaction will be expected to be solved as taken into consideration of the proper combinations of design variables in design of curved bridge.