• 제목/요약/키워드: Grid-connected operation

검색결과 257건 처리시간 0.026초

리튬이온전지를 이용한 태양광전원의 운용효율향상장치의 제어 알고리즘에 관한 연구 (A Study on Control Algorithms of Efficiency Improvement Device for PV System Operation using Li-ion Battery)

  • 박지현;김병목;이후동;남양현;노대석
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.590-597
    • /
    • 2018
  • 최근 전 세계적으로 에너지 고갈과 기후변화 문제로 인하여, 재생 가능하고 친환경적인 태양광전원에 대한 관심이 증가되고 있다. 그러나, 이러한 태양광전원은 주변 환경에 따라 출력이 크게 변동되는데, 일부 모듈에만 음영이 발생하여도 태양광전원의 전체적인 운용 효율이 상당히 저하되는 문제점을 가지고 있다. 즉, 기존의 제어방식에서는 모듈을 직렬로 연결된 스트링들이 인버터에 연계되어 있으므로, 일부 모듈에 부분 음영이 발생하면 해당 스트링의 전압이 인버터의 동작전압범위를 벗어나게 되어, 해당 스트링이 인버터에서 탈락되는 문제점이 발생할 수 있다. 따라서, 본 논문에서는 음영에 의하여 태양광 스트링이 인버터에서 탈락되는 것을 방지하기 위하여, 태양광스트링에 리튬이온전지를 연결한 태양광전원 운용효율 향상장치의 제어알고리즘을 제안한다. 또한, 전력전자 회로해석 상용 프로그램인 PSIM S/W를 이용하여 태양광스트링, 리튬이온전지, 계통연계형 인버터로 구성된 태양광전원의 운용효율향상장치의 모델링을 수행하여 운용 특성을 분석한 결과, 직렬로 연결된 리튬이온전지가 부분 음영에 의하여 전압 저하를 발생한 해당 스트링의 전압을 보상함으로서, 해당 스트링이 인버터에서 탈락되는 현상을 개선하여 태양광전원의 운용효율을 향상시킬 수 있음을 알 수 있었다.

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

계통 연계형 3-레벨 인버터 시스템을 위한 LCL-필터 설계 방법 (Design of an LCL-Filter for Grid-Connected Three-Level Inverter System)

  • 박준영;김석민;서승규;박성수;이교범
    • 전기전자학회논문지
    • /
    • 제21권2호
    • /
    • pp.105-114
    • /
    • 2017
  • 본 논문은 계통 연계형 3-레벨 인버터 시스템을 위한 LCL-필터 설계 방법을 제안한다. 최근 풍력 및 태양광과 같은 신재생에너지 발전 시스템을 위한 3상 PWM 인버터의 수요가 증가하고 있다. 이러한 PWM 인버터는 스위칭 동작에 의해 발생하는 고조파 성분을 제거하기 위하여 LCL-필터를 거쳐 계통과 연결된다. 필터 설계에 관한 다양한 연구가 진행되었지만 최소의 사이즈로 목표하는 고조파 제거 성능을 얻기 위해서는 해당 PWM 인버터의 스위칭 방법을 고려한 필터 설계 방법이 요구된다. 본 논문은 공간 전압벡터 변조기법(SVPWM)에 최적화된 LCL-필터 설계방법을 제시한다. 시뮬레이션과 실험 결과를 통해 제안하는 방법으로 설계된 LCL-필터의 성능을 검증한다.

Modeling and Control Design of Dynamic Voltage Restorer in Microgrids Based on a Novel Composite Controller

  • Huang, Yonghong;Xu, Junjun;Sun, Yukun;Huang, Yuxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1645-1655
    • /
    • 2016
  • A Dynamic Voltage Restorer (DVR) model is proposed to eliminate the short-term voltage disturbances that occur in the grid-connected mode, the switching between grid-connected mode and the stand-alone mode of a Microgrid. The proposed DVR structure is based on a conventional cascaded H-bridge multilevel inverter (MLI) topology; a novel composite control strategy is presented, which could ensure the compensation ability of voltage sag by the DVR. Moreover, the compensation to specified order of harmonic is added to implement effects that zero-steady error compensation to harmonic voltage in specified order of the presented control strategy; utilizing wind turbines-batteries units as DC energy storage components in the Microgrid, the operation cost of the DVR is reduced. When the Microgrid operates under stand-alone mode, the DVR can operate on microsource mode, which could ease the power supply from the main grid (distribution network) and consequently be favorable for energy saving and emission reduction. Simulation results validate the robustness and effective of the proposed DVR system.

전기자동차 충·방전제어 통합 환경을 고려한 전기차 1차 주파수 회복예비력의 계통연계형 모델링 (Gird Connected Modeling of Primary Frequency Recovery Reserve Provided by Electric Vehicle Considering Characteristics of Electric Vehicle Charge/Discharge Control Integrated Environment)

  • 국경수;이지훈;문종희;최우영;박기준;장동식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권2호
    • /
    • pp.249-254
    • /
    • 2021
  • As the spreading speed of electric vehicles increases rapidly, those are expected to be able to use them as flexible resources in the power system beyond the concern for the supply of its charging power. Especially when the Renewable Energy sources (RES) which have no intrinsic control capability have replaced the synchronous generators more and more, the power system needs to secure the additional frequency control resources to ensure its stability. However, the feasibility of using electric vehicles as the frequency control resources should be analyzed from the perspective of the power system operation and it requires the existing simulation frameworks for the power system. Therefore, this paper proposes the grid connected modeling of the primary frequency control provided by electric vehicles which can be integrated into the existing power system model. In addition, the proposed model is implemented considering technical performances constrained by the characteristics of the Vehicle-Grid Integration (VGI) system so that the simulation results can be accepted by the power utilities operating the power system conservatively.

계통 연계형 태양광 발전 인버터의 디지털 제어 (Digital Control of Utility-Connected PV Inverter)

  • 김용균;최종우;김흥근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1161-1165
    • /
    • 2004
  • The fundamental digital control of utility-connected PV inverter are presented with detailed analysis and simulation and experimental results. PLL controller using virtual two phase detector, current controller of DC-DC converter, dc link voltage controller and inverter current controller are discussed. The novel PLL controller using virtual two phase detector can detect the information of utility voltage instantaneously and is not sensitive to the noise. Current controller of DC-DC converter, dc link voltage controller and inverter current controller are the conventional methods. We have constructed utility-Connected PV Inverter and applied to those controllers. The simulation and experimental results demonstrate an excellent performance in the single-phase grid-connected operation.

  • PDF

Selection of Coupling Factor for Minimum Inductor Current Ripple in Multi-winding Coupled Inductor Used in Bidirectional DC-DC Converters

  • Kang, Taewon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.879-891
    • /
    • 2018
  • A bidirectional dc-dc converter is used in battery energy storage systems owing to the growing requirements of a charging and discharging mode of battery. The magnetic coupling of output or input inductors in parallel-connected multi modules of a bidirectional dc-dc converter is often utilized to reduce the peak-to-peak ripple size of the inductor current. This study proposes a novel design guideline to achieve minimal ripple size of the inductor current under bidirectional power flow. The newly proposed design guideline of optimized coupling factor is applicable to the buck and boost operation modes of a bidirectional dc-dc converter. Therefore, the coupling factor value of the coupled inductor does not have to be optimized separately for buck and boost operation modes. This new observation is explained using the theoretical model of coupled inductor and confirmed through simulation and experimental test.

마이크로그리드의 운전모드를 고려한 자동발전제어시스템 (Automatic Generation Control System for Operation Mode in Microgrid)

  • 박중성;이학주;채우규;김주용;조진태
    • 전기학회논문지
    • /
    • 제61권7호
    • /
    • pp.928-936
    • /
    • 2012
  • The microgrid concept assumes a cluster of loads and microsources operating as a single controllable system that provides a new paradigm for defining the operation of distributed generation. This system can be operated as both grid-connected mode and islanded mode. In other words, the microgrid can be operated to meet their special need; such as economics in steady state and local reliability in islanded mode due to the grid fault. This paper presents the AGC (Automatic Generation Control) method for microgrid with EMS (Energy Management System).

Research and Stability Analysis of Active-Disturbance-Rejection-Control-Based Microgrid Controllers

  • Xu, Xiaoning;Zhou, Xuesong;Ma, Youjie;Liu, Yiqi
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1611-1624
    • /
    • 2017
  • With the rapid development of microgrid technology, microgrid projects are no longer limited to laboratory demonstrations and pilot platforms. It shows greater value in practical applications. Hence, the smooth interaction between a microgrid and the main grid plays a critical role. In this paper, a control method based on active disturbance rejection control (ADRC) is proposed in order to realize seamless transitions between grid-connected and islanding operation modes and stable operation with variable loads. It is verified by simulations that the proposed ADRC-based method features better performance when compared to conventional proportional-integral-differential (PID) control. Meanwhile, the stability of the third-order extended state observer (ESO) in second-order ADRC is validated by using Lyapunov stability criteria.

Lessons Learned from Energy Storage System Demonstrations for Primary Frequency Control

  • Yu, Kwang-myung;Choi, In-kyu;Woo, Joo-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제4권2호
    • /
    • pp.107-114
    • /
    • 2018
  • In recent years, ESS (Energy Storage System) has been widely used in various parts of a power system. Especially, due to its fast response time and high ramp rate, ESS is known to play an important role in regulating grid frequency and providing rotational inertia. As the number of installed and commercially operating ESSs increases, the reliability becomes an important issue. This paper introduces control schemes and presents its test method for grid-connected ESS for primary frequency regulation. The test method allows to verify the control operation in the individual operation mode and state. A validation of the method through actual ESS test in a electrical substation is presented in the case study section.