• Title/Summary/Keyword: Grid-connected inverter

Search Result 502, Processing Time 0.033 seconds

Comparative Study between Two and Single-loop Control of Boost Converter for PVPCS (태양광용 부스트 컨버터의 2중 루프 제어 및 단일 루프 제어의 특성 비교)

  • Kim, Dong-Whan;Im, Ji-Hoon;Song, Seung-Ho;Choi, Ju-Yeop;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.153-159
    • /
    • 2012
  • In photovoltaic system, the characteristic of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, a boost converter of the PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristic of the boost converter by comparing single-loop control algorithm and two-loop control algorithm using both analog and digital control. The proposed both compensation method has been verified with computer simulation and simulation results obtained demonstrate the validity of the proposed control schemes.

  • PDF

Smart Panel Board for EV Standard Chargers and Its Control Method (전기자동차 완속충전기용 스마트 분전반 및 그 제어방법)

  • Kim, Myeong-Soo;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.511-521
    • /
    • 2014
  • This study proposes an electric vehicle (EV) smart panel board and its control method on the basis of charging scheduling. The proposed system consists of batteries, a three-phase battery charger, three single-phase inverters, transfer switches for electric power distribution, and a controller. The three-phase battery charger usually charges the batteries at midnight when electric rates are cheap and in light load. When the electric power consumption of the EV standard chargers connected to one phase of the power line is relatively large or when a blackout occurs, the electric power stored in the battery is supplied by discharging through the inverters to the EV standard chargers. As a result, the value of peak load and the charging electric power quantity supplied from a utility grid are reduced, and the current unbalance is improved. The usefulness of the proposed system is confirmed through simulations, experiments, and case studies.

A Study on PV Power Generation System Adding the Function of Shunt Active Filler Using DSP (DSP를 이용한 엑티브 필터 기능 추가형 태양광발전시스템의 운전특성에 관한 연구)

  • Seo, Hyo-Ryong;Park, Young-Gil;Kim, Jong-Hyun;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1169-1170
    • /
    • 2006
  • Grid connected PV(Photovoltic) generation systems are becoming and actual and general. The power output of PV system is directly affected by the weather conditions. And when AC power supply is needed, power conversion by an inverter and a MPPT control are necessary. The PV power generation system can be treated to a harmonics source for the power distribution system. So, the PV system combined the function of active filter system can be useful applied in power distribution system. AF(Active Filters) intended for harmonic solutions are expending their functions from harmonic compensation of nonlinear loads into harmonic isolation between utilities and consumer. With the test analysis of the proposed control strategy of PV-AF system, the outcome of the test shows the stability and effectiveness of the proposed PV-AF system. The various capability of AF has been proved in previous research and usage. In this paper, authors present a DSP controlled PV-AF system for power conditioning in three-phase industrial or commercial power systems and verify it through experimental results.

  • PDF

A Seamless and Autonomous Mode Transfer Method of Bidirectional Grid Connected Inverter in Microgrid. (마이크로그리드에서 양방향 계통연계형 인버터의 자율적이며 끊김없는 모드전환 기법)

  • Park, Sungyoul;Kwon, Minho;Shin, Yangjin;Jung, Hoyoung;Kang, Suhan;Choi, Sewan
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.36-38
    • /
    • 2018
  • 중요부하를 가지고 있는 계통연계 인버터는 계통과의 연결이 끊길 경우 중요부하에 안정적인 전압공급을 위하여 끊김 없는 모드전환 동작이 요구된다. 기존 인버터는 계통연계 시 전류제어모드, 독립운전 시에는 전압제어모드로 운전을 한다. 그래서 모드전환 시 제어기절체로 인한 출력전압에 심각한 과도상태가 발생할 수 있으며 단독운전 검출 전에도 불안정한 전압을 부하에 공급하게 되어 중요부하에 큰 손상을 입힐 수 있다. 본 논문에서는 LCL필터 뿐만 아니라 LC필터 구조에서도 적용이 가능하며, 양방향 운전 시 자율적인 모드전환이 가능한 계통연계 인버터의 모드전환 기법을 제안한다. 제안된 알고리즘은 5kW 시작품을 제작하여 타당성을 검증하였다.

  • PDF

2011, The Analysis Operating Characteristics of Photovoltaic System in Naju-city (2011년 나주시 태양광 발전 시스템의 운전특성)

  • Hyun, Jeong-Woo;Lee, Nam-Jin;Cha, In-Su;Kim, Dong-Mook;Choi, Jeong-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.359-363
    • /
    • 2011
  • Building-integrated photovoltaics(BIPV)are increasingly incorporate into new domestic and industrial buildings as a proncipal or ancillary source of electrical power, and are on of the fastest growing segments of the photovoltaic industry. This paper presents operational features analysis and PCS(Power conversion System) factors of grid-connected 30kW BIPV on library of Dongshin University. The data consisted of insolation, Temperature, solar-cell performance and inverter performance are collected by IVIsion web monitoring system and analyzed. The analyzed data gave this paper effect elements of optimal operation.

  • PDF

DC-link Voltage Control of HVDC for Offshore Wind Farm using Improved De-loading Method (개선된 De-loading기법을 이용한 해상풍력 연계용 HVDC의 DC 전압의 제어방안)

  • Huh, Jae-Sun;Moon, Won-Sik;Park, Sang-In;Kim, Doo-Hee;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.3
    • /
    • pp.399-404
    • /
    • 2015
  • This paper presents the DC voltage control method in DC link of High Voltage Direct Current(HVDC) for an offshore wind farm in Low Voltage Ride Through(LVRT) situation. Wind generators in an offshore wind farm are connected to onshore network via HVDC transmission. Due to LVRT control of grid side inverter in HVDC, power imbalancing in DC link is generated and this consequentially causes rising of DC voltage. A de-loading scheme is one of the method to protect the wind power system DC link capacitors from over voltage. But the flaw of this method is slow control response time and that it needs long recovery time to pre-fault condition after fault clear. Thus, this paper proposes improved de-loading method and we analyze control performance for DC voltage in LVRT control of HVDC for an offshore wind farm.

Development of 200kW Grid-Connected Photovoltaic Inverter (200kW급 태양광발전용 계통연계형 인버터의 개발)

  • Kim, Young-Roc;Ra, Byung-Hun;Moon, Joon-Sun;Son, Yong-Hoon;Shin, Young-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.527-529
    • /
    • 2007
  • 본 논문에서는 120kW급에 이어 단일용량 200kW급 태양광발전용 계통연계형 인버터의 개발에 관한 내용을 설명하고 있다. 200kW급 계통연계형 태양광발전시스템은 22.9kV의 특고압 계통전원에 연계되도록 설계되었으며, 삼상 380V를 22.9kV로 승압 연계하는 2단 절연방식을 채택하였다. 200kW급 인버터는 상용주파수 변압기 절연방식으로 3상4선식 380V 60Hz 출력을 가지고 있으며, 인버터 내부에 200kVA급 변압기와 리액터를 포함하고 있다. 최대 전력점 추종(Maximum Power Point Tracking, MPPT)제어 기법으로 P&O 알고리즘을 적용하였으며, 3상 IGBT 인버터를 DSP로 제어하였다. 본 논문에서는 200kW급 단일용량 인버터를 개발함에 있어, 계통연계 시험, 단독운전 검출 및 방지 시험, 발전량에 따른 효율과 THD 측정 등의 결과를 보이고 있다.

  • PDF

The efficient DC-link voltage design of the Type 4 wind turbine that satisfies HVRT function requirements (HVRT 기능 요구조건을 만족하는 Type 4 풍력 발전기의 효율적인 직류단 전압 설계)

  • Baek, Seung-Hyuk;Kim, Sungmin
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.399-407
    • /
    • 2021
  • This paper proposes the DC-link voltage design method of Type 4 wind turbine that minimizes power loss and satisfies the High Voltage Ride Through(HVRT) function requirements of the transmission system operator. The Type 4 wind turbine used for large-capacity offshore wind turbine consists of the Back-to-Back converter in which the converter linked to the power grid and the inverter linked to the wind turbine share the DC-link. When the grid high voltage fault occurs in the Type 4 wind turbine, if the DC-link voltage is insufficient compared to the fault voltage level, the current controller of the grid-side converter can't operate smoothly due to over modulation. Therefore, to satisfy the HVRT function, the DC-link voltage should be designed based on the voltage level of high voltage fault. However, steady-state switching losses increase further as the DC-link voltage increases. Therefore, the considerations should be included for the loss to be increased when the DC-link voltage is designed significantly. In this paper, the design method for the DC-link voltage considered the fault voltage level and the loss is explained, and the validity of the proposed design method is verified through the HVRT function simulation based on the PSCAD model of the 2MVA Type 4 wind turbine.

Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS (PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교)

  • Kim, Dong-Hwan;Jung, Seung-Hwan;Song, Seung-Ho;Choi, Ju-Yeop;Choi, Ick;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.

Probabilistic Reliability Based HVDC Expansion Planning of Power System Including Wind Turbine Generators (풍력발전기를 포함하는 전력계통에서의 신뢰도 기반 HVDC 확충계획)

  • Oh, Ungjin;Lee, Yeonchan;Choi, Jaeseok;Yoon, Yongbeum;Kim, Chan-Ki;Lim, Jintaek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • New methodology for probabilistic reliability based grid expansion planning of HVDC in power system including Wind Turbine Generators(WTG) is developed in this paper. This problem is focused on scenario based optimal selection technique to decide best connection bus of new transmission lines of HVDC in view point of adequacy reliability in power system including WTG. This requires two kinds of modeling and simulation for reliability evaluation. One is how is reliability evaluation model and simulation of WTG. Another is to develop a failure model of HVDC. First, reliability evaluation of power system including WTG needs multi-state simulation methodology because of intermittent characteristics of wind speed and nonlinear generation curve of WTG. Reliability methodology of power system including WTG has already been developed with considering multi-state simulation over the years in the world. The multi-state model already developed by authors is used for WTG reliability simulation in this study. Second, the power system including HVDC includes AC/DC converter and DC/AC inverter substation. The substation is composed of a lot of thyristor devices, in which devices have possibility of failure occurrence in potential. Failure model of AC/DC converter and DC/AC inverter substation in order to simulate HVDC reliability is newly proposed in this paper. Furthermore, this problem should be formulated in hierarchical level II(HLII) reliability evaluation because of best bus choice problem for connecting new HVDC and transmission lines consideration. HLII reliability simulation technique is not simple but difficult and complex. CmRel program, which is adequacy reliability evaluation program developed by authors, is extended and developed for this study. Using proposed method, new HVDC connected bus point is able to be decided at best reliability level successfully. Methodology proposed in this paper is applied to small sized model power system.