• Title/Summary/Keyword: Grid-connected inverter

Search Result 502, Processing Time 0.022 seconds

A Study on the MPPT Control Method for Grid-connected Multi-String Three-Phase Three-Level PV Inverter (계통연계형 멀티스트링 3상 3레벨 태양광 인버터의 MPPT 제어방법에 관한 연구)

  • Kim, Jinsoo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2014
  • Two-level inverter has some disadvantages like high harmonics contained in the output current, efficiency limit and stress to switching device as IGBT and FET. Many researches have reported multi-level inverter to complement two-level inverter of problems. In this paper, we suggest MPPT algorithm of multi-string three-level solar inverter that considered nowadays. We added midpoint controller in order to implement the MPPT algorithm because the three-level inverter has to need midpoint controller and procured the stability of direct current link. We verify the superiority of multi-string T-Type inverter and the algorithm we suggested with solar irradiance variation experiment and MPPT efficiency measurement. The MPPT efficiency was confirmed with a high efficiency more than 99.97%.

A New On-Line Dead-Time Compensator for Single-Phase PV Inverter (단상 PV 인버터용 온라인 데드타임 보상기 연구)

  • Vu, Trung-Kien;Lee, Sang-Hoey;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.409-415
    • /
    • 2012
  • This paper presents a new software-based on-line dead-time compensation technique for a single-phase grid-connected photovoltaic (PV) inverter system. To prevent a short circuit in the inverter arms, a switching delay time must be inserted in the pulse width modulation (PWM) signals. This causes the dead-time effect, which degrades the system performance around zero-crossing point of the output current. To reduce the dead-time effect around the zero-crossing point of grid current, a harmonic mitigation of grid current is used as an additional part of the synchronous frame current control scheme. This additional task mitigates the harmonic components caused by the dead-time from the grid current. Simulation and experimental results are shown to verify the effectiveness of the proposed dead-time compensation method in the single-phase grid-connected inverter system.

Active Damping Characteristics on Virtual Series Resistances of LCL Filter for Three-phase Grid-connected Inverter (인덕터 내부저항을 고려한 LCL 필터의 능동댐핑 특성)

  • Kim, Yong-Jung;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.1
    • /
    • pp.88-93
    • /
    • 2016
  • LCL filters are widely used in high-order harmonics attenuation of output currents in grid-connected inverters. However, output currents of grid-connected inverters with LCL filters can become unstable because of the resonance of the filters. Given that the characteristics of output currents in inverters mostly depend on filter performance, the exact analysis of filters by considering parasitic components is necessary for both harmonics attenuation and current control. LCL filters have three or four parasitic components: the series and/or parallel resistance of the filter capacitor and the series resistance of the two filter inductors. Most studies on LCL filters have focused on the parasitic components of the filter capacitor. Although several studies have addressed the parasitic components of the filter inductor at the inverter side, no study has yet investigated the concurrent effects of series resistance in both filter inductors in detail. This paper analyzes LCL filters by considering series resistance in both filter inductors; it proposes an active damping method based on the virtual series resistance of LCL filters. The performance of the proposed active damping is then verified through both simulation and experiment using Hardware-in-the-Loop Simulator(HILS).

High-Frequency DC Link Inverter for Grid-Connected Photovoltaic System (고주파링크방식을 이용한 PV용 PCS의 고찰)

  • Jung, Young-Seok;Yu, Gwon-Jong;Jung, Myoung-Woong;Choi, Jae-Ho;Choi, Ju-Yeop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1313-1315
    • /
    • 2002
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency inverter bridge, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter bridge, and an AD filter. The high frequency inverter bridge switching at 20kHz is used to generate bipolar PWM pulse, which is subsequently rectified by diode bridge rectifiers to result in a full-wave rectified sine wave. Finally, it is unfolded by a low frequency inverter bridge to result in a 60Hz sine wave power output. In this paper, the control algorithm for synchronous current feedback control method and a maximum power point tracking (MPPT) method using DSP are described. And, the simulation and experimental results are shown to verify the validity of the proposed system.

  • PDF

Grid-Connected Photovoltaic System Based on a Cascaded H-Bridge Inverter

  • Rezaei, Mohammad-Ali;Iman-Eini, Hossein;Farhangi, Shahrokh
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.578-586
    • /
    • 2012
  • In this paper a single-phase Cascaded H-Bridge (CHB) inverter for photovoltaic (PV) applications is presented. Based on the presented mathematical analysis, a novel controller is introduced which adjusts the inverter power factor (PF) and manipulates the distribution of the reactive power between the cells to enhance the operating range of the CHB inverter. The adopted control strategy enables tracking of the maximum power point (MPP) of distinct PV strings and allows independent control of the dc-link voltages. The proposed controller also enables the inverter to operate under heavily unbalanced PV conditions. The performance of the CHB inverter and the proposed controllers are evaluated in the PSCAD/EMTDC environment. A seven-level CHB-based grid connected laboratory prototype is also utilized to verify the system performance.

Mechanism Analysis and Stabilization of Three-Phase Grid-Inverter Systems Considering Frequency Coupling

  • Wang, Guoning;Du, Xiong;Shi, Ying;Tai, Heng-Ming;Ji, Yongliang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.853-862
    • /
    • 2018
  • Frequency coupling in the phase domain is a recently reported phenomenon for phase locked loop (PLL) based three-phase grid-inverter systems. This paper investigates the mechanism and stabilization method for the frequency coupling to the stability of grid-inverter systems. Self and accompanying admittance models are employed to represent the frequency coupling characteristics of the inverter, and a small signal equivalent circuit of a grid-inverter system is set up to reveal the mechanism of the frequency coupling to the system stability. The analysis reveals that the equivalent inverter admittance is changed due to the frequency coupling of the inverter, and the system stability is affected. In the end, retuning the bandwidth of the phase locked loop is presented to stabilize the three-phase grid-inverter system. Experimental results are given to verify the analysis and the stabilization scheme.

Modal Analysis of Resonance and Stable Domain Calculation of Active Damping in Multi-inverter Grid-connected Systems

  • Wu, Jian;Chen, Tao;Han, Wanqin;Zhao, Jiaqi;Li, Binbin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.185-194
    • /
    • 2018
  • Interaction among multiple grid-connected inverters has a negative impact on the stable operations and power quality of a power grid. The interrelated influences of inverter inductor-capacitor-inductor filters constitute a high-order power network, and consequently, excite complex resonances at various frequencies. This study first establishes a micro-grid admittance matrix, in which inverters use deadbeat control. Multiple resonances can then be evaluated via modal analysis. For the active damping method applied to deadbeat control, the sampling frequency and the stable domain of the virtual damping ratio are also presented by analyzing system stability in the discrete domain. Simulation and experimental results confirm the efficiency of modal analysis and stable domain calculation in multi-inverter grid-connected systems.

Modulated Finite Control Set - Model Predictive Control for Harmonic Reduction in a Grid-connected Inverter

  • Nguyen, Tien Hai;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.268-269
    • /
    • 2017
  • This paper presents an improved current control strategy for a three-phase grid-connected inverter under distorted grid conditions. Distorted grid condition is undesirable due to negative effects such as power losses and heating problem in electrical equipments. To enhance the power quality of distributed generation systems under such a condition, a modulated finite control set - model predictive control (MFCS-MPC) scheme will be proposed, in which the optimal switching signals of inverter are chosen by online basis using the principle of current error minimization. In addition, the moving average filter (MAF) is used to improve the phase-lock loop in order to obtain the harmonic-free reference currents on the stationary frame. The usefulness of the proposed MFCS-MPC method is proved by the comparative simulation results under different operating conditions.

  • PDF

Resonance Characteristics Analysis of Grid-connected Inverter Systems based on Sensitivity Theory

  • Wu, Jian;Han, Wanqin;Chen, Tao;Zhao, Jiaqi;Li, Binbin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.746-756
    • /
    • 2018
  • Harmonic resonance exists in grid-connected inverter systems. In order to determine the network components that contribute to harmonic resonance and the composition of the resonant circuit, sensitivity theory is applied to the resonance characteristic analysis. Based on the modal analysis, the theory of sensitivity is applied to derive a formula for determining the sensitivities of each network component parameter under a resonance circumstance that reflects the participation of the network component. The solving formula is derived for both parallel harmonic resonance and series harmonic resonance. This formula is adopted to a 4-node grid-connected test system. The analysis results reveal that for a certain frequency, the participation of parallel resonance and series resonance are not the same. Finally, experimental results demonstrate that the solving formula for sensitivity is feasible for grid-connected systems.

An Active Feedforward Compensation for a Current Harmonics Reduction in Three-phase Grid-connected Inverters (3상 계통 연계형 인버터에서의 전류 고조파 감쇄를 위한 능동형 피드포워드 보상 기법)

  • Park, Byong-Jun;Kim, Rae-Young;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • This paper proposes a current harmonic compensation method for the grid-connected inverter, especially caused by the grid impedance. Grid impedance causes low order harmonics in the grid current and deteriorates power quality. This paper analyzes the negative impact of the grid impedance, and proposes an active feedforward compensation method. Proposing method verified through simulation and experiment with 3-phase 1.5kW voltage source inverter prototype.