• Title/Summary/Keyword: Grid-connected control

Search Result 528, Processing Time 0.029 seconds

Performance Analysis of 100kWp Photovoltaics System in Tibet (중국 티베트 지역의 100kWp급 태양광발전시스템 성능분석)

  • Kim, Seok-Ki;Choi, Bong-Ha;Park, Soo-Uk;Song, Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.284-287
    • /
    • 2007
  • This paper presents the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea. The economical analysis has shown that with the current prices, investment in a grid connected PV systems is generally profitable

  • PDF

Analysis of Proportional Control for Grid Connected Inverter With LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.247-249
    • /
    • 2008
  • There are many types of grid-connected inverter controllers; Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. However, SRF-based controller has a complex algorithm to apply in real application such as digital processor. Resonant controller is also reduced zero-steady state error, but its transfer function has a high order. In this paper, a simple proportional control is applied for grid connected inverter with LCL filter. LCL filter is a third order system. Applying a simple proportional controller is not increased the order of closed loop transfer function. By this technique, the single phase model is easily obtained. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

A Study on Tuning of Current Controller for Grid-connected Inverter Using Particle Swarm Optimization (PSO를 이용한 계통연계형 인버터 전류제어기의 자동조정에 관한 연구)

  • Ahn Jong-Bo;Kim Won-gon;Hwang Ki-Hyun;Park Jun-H
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.11
    • /
    • pp.671-679
    • /
    • 2004
  • This paper presents the on-line current controller tuning method of grid-connected inverter using PSO(particle swarm optimization) technique for minimizing the harmonic current. Synchronous frame PI current regulator is commonly used in most distributed generation. However, due to the source voltage distortion, specially in weak AC power system, current may contain large harmonic components, which increase THD(total harmonic distortion) and deteriorates power quality. Therefore, some tuning method is necessary to improve response of current controller. This paper used the PSO technique to tune the current regulator and through simulation and experiments, usefulness of the tuning method has been verified. Especially in simulating the tuning process, ASM(average switching model) of inverter is used to shorten execution time.

Enhanced Controller Topology for Photovoltaic Sourced Grid Connected Inverters under Unbalanced Nonlinear Loading

  • Sivakumar, P.;Arutchelvi, Meenakshi Sundaram
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.369-382
    • /
    • 2014
  • A growing dynamic electrical demand has created an increasing interest in utilizing nonconventional energy sources like Photovoltaic (PV), wind power, etc. In this context, this paper focuses on the design and development of a composite power controller (CPC) in the decoupled double synchronous reference frame (DDSRF) combining the advantages of direct power control (DPC) and voltage oriented control (VOC) for a PV sourced grid connected inverter. In addition, a controller with the inherent active filter configuration is tested with nonlinear and unbalanced loads at the point of common coupling in both grid connected and autonomous modes of operation. Furthermore, the loss and reactive power compensation due to a non-fundamental component is also incorporated in the design, and the developed DDSRF model subsequently allows independent active and reactive power control. The proposed developed model of the controller is also implemented using MATLAB-Simulink-ISE and a Xilinx system generator which evaluate both the simulated and experimental setups. The simulation and experimental results confirm the validity of the developed model. Further, simulation results for the DPC are also presented and compared with the proposed CPC to further bring out the salient features of the proposed work.

Fault Diagnosis and Fault-Tolerant Control of DC-link Voltage Sensor for Two-stage Three-Phase Grid-Connected PV Inverters

  • Kim, Gwang-Seob;Lee, Kyo-Beum;Lee, Dong-Choon;Kim, Jang-Mok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.752-759
    • /
    • 2013
  • This paper proposes a method for fault diagnosis and fault-tolerant control of DC-link voltage sensor for two-stage three-phase grid-connected PV inverters. Generally, the front-end DC-DC boost converter tracks the maximum power point (MPP) of PV array and the rear-end DC-AC inverter is used to generate a sinusoidal output current and keep the DC-link voltage constant. In this system, a sensor is essential for power conversion. A sensor fault is detected when there is an error between the sensed and estimated values, which are obtained from a DC-link voltage sensorless algorithm. Fault-tolerant control is achieved by using the estimated values. A deadbeat current controller is used to meet the dynamic characteristic of the proposed algorithm. The proposed algorithm is validated by simulation and experiment results.

An Improved Multi-Tuned Filter for High Power Photovoltaic Grid-Connected Converters Based on Digital Control

  • Sun, Guangyu;Li, Yongli;Jin, Wei
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.160-170
    • /
    • 2018
  • For high power photovoltaic (PV) grid-connected converters, high order filters such as multi-tuned filters and Traps+RC filters with outstanding filtering performance have been widely researched. In this paper, the optimization of a multi-tuned filter with a low damping resistance and research on its corresponding control scheme have been combined to improve the performance of the proposed filter. Based on the characteristics of the switching harmonics produced by PWM, the proposed filter is optimized to further improve its filtering performance. When compared with the more common Traps+RC filter, the advantages of the proposed filter with low damping resistances in attenuating the major switching harmonics have been demonstrated. In addition, a simpler topology and reduced power loss can be achieved. On the other hand, to make the implementation of the proposed filter possible, on the base of the unique frequency response characteristic of the proposed filter, a digital single-loop control scheme has been proposed. This scheme is a simple and effective means to suppress the resonance peak caused by a lack of damping. Therefore, a smaller volume, better efficiency of the proposed filter, and easy implementation of the corresponding control scheme can be realized. Finally, the superiority of the proposed filter topology and control scheme is verified in experiments.

A Study on the Estimation of the Resonance Frequency for an Active Damping Technique of Grid Connected Converters (계통 연계형 컨버터의 능동 댐핑을 위한 공진주파수 추정 기능에 관한 연구)

  • Park, Il-Woo;Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.1
    • /
    • pp.76-84
    • /
    • 2013
  • The renewable energy sources is raising for use of grid connected systems, for which higher power quality requirements are being issued. A grid connected converter requires a LC-filter stage, this one is lightly damped for efficiency constraints. Hence, it is subject to resonance if excited by the converter current harmonics or pre-exciting grid voltage harmonics. In this paper, an active damping technique employing notch filter for damping of the resonance frequency is introduced. This technique doesn't need to additional sensors. In addition, it is simple to apply for various systems. Monitoring of the resonance frequency ensures the stable operation of the proper connection and disconnection of the grid. This paper proposes the estimating method of a resonant frequency to determine the cut-off frequency of the notch filter. This method is validated by both simulation and experimental results.

A Novel Three-Phase Four-Wire Grid-Connected Synchronverter that Mimics Synchronous Generators

  • Tan, Qian;Lv, Zhipeng;Xu, Bei;Jiang, Wenqian;Ai, Xin;Zhong, Qingchang
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2221-2230
    • /
    • 2016
  • Voltage and frequency stability issues occur in existing centralized power system due to the high penetration of renewable energy sources, which decrease grid absorptive capacity of them. The grid-connected inverter that mimics synchronous generator characteristics with inertia characteristic is beneficial to electric power system stability. This paper proposed a novel three-phase four-wire grid-connected inverter with an independent neutral line module that mimics synchronous generators. A mathematical model of the synchronous generator and operation principles of the synchronverter are introduced. The main circuit and control parameters design procedures are also provided in detail. A 10 kW prototype is built and tested for further verification. The primary frequency modulation and primary voltage regulation characteristics of the synchronous generator are emulated and automatically adjusted by the proposed circuit, which helps to supports the grid.

DC link Ripple Voltage Compensation of a Single-phase Grid-Connected PV System (단상 계통연계형 태양광 발전 시스템의 직류링크 맥동전압 보상)

  • Lee, Jae-Geun;Choi, Jong-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.377-387
    • /
    • 2012
  • A single-phase grid-connected PV system is known as suitable for housing of less than 3 kW. The DC link voltage in a single-phase PV system has necessarily twice component of fundamental wave. It makes high THD in the grid current. According to the problem, power quality is lower. Many engineers have studied about this problem. The most simple method is to use low pass filter on DC link voltage control. However it is affected by DC link voltage control bandwidth. If cutoff frequency is reduced to increase the performance of low pass filter, it also lowers DC link voltage control bandwidth. Second method is using band stop filter, it works good on steady state but not good on transient state. This paper proposes the new method for removing ripple voltage to get an exact current reference. It improves the responses on steady state and transient state. The performance was verified through computer simulation using MATLAB and actual experiments.

Maximum Power Point Tracking Control Scheme for Grid Connected Variable Speed Wind Driven Self-Excited Induction Generator

  • El-Sousy Fayez F. M.;Orabi Mohamed;Godah Hatem
    • Journal of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.52-66
    • /
    • 2006
  • This paper proposes a wind energy conversion system connected to a grid using a self-excited induction generator (SEIG) based on the maximum power point tracking (MPPT) control scheme. The induction generator (IG) is controlled by the MPPT below the base speed and the maximum energy can be captured from the wind turbine. Therefore, the stator currents of the IG are optimally controlled using the indirect field orientation control (IFOC) according to the generator speed in order to maximize the generated power from the wind turbine. The SEIG feeds a (CRPWM) converter which regulates the DC-link voltage at a constant value where the speed of the IG is varied. Based on the IG d-q axes dynamic model in the synchronous reference frame at field orientation, high-performance synchronous current controllers with satisfactory performance are designed and analyzed. Utilizing these current controllers and IFOC, a fast dynamic response and low current harmonic distortion are attained. The regulated DC-link voltage feeds a grid connected CRPWM inverter. By using the virtual flux orientation control and the synchronous frame current regulators for the grid connected CRPWM inverter, a fast current response, low harmonic distortion and unity power factor are achieved. The complete system has been simulated with different wind velocities. The simulation results are presented to illustrate the effectiveness of the proposed MPPT control scheme for a wind energy system. In the simulation results, the d-q axes current controllers and DC-link voltage controller give prominent dynamic response in command tracking and load regulation characteristics.