• Title/Summary/Keyword: Grid-connected PV System

Search Result 234, Processing Time 0.025 seconds

Assessment on Power Quality of Grid-Connected PV System Based on Incremental Conductance MPPT Control (증분컨덕턴스 MPPT제어 기반 계통연계형 태양광발전시스템의 전력품질 평가)

  • Seol, Jae-Woong;Jang, Jae-Jung;Kim, Dong-Min;Lee, Seung-Hyuk;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • During the last years, there has been an increased interest in the new energy such as photovoltaic(PV) system from the viewpoint of environmental pollution. In this regard, this paper estimates the power quality of grid-connected PV system. As the maximum power operating point(MPOP) of photovoltaic(PV) power systems alters with changing atmospheric conditions, the efficiency of maximum power point tracking(MPPT) is important in PV power systems. Moreover, grid-connected PV system occurs some problems such as voltage inequality and harmonics. Therefore, this paper presents the results of a grid-connected PV system modeling that contains incremental conductance MPPT controller by PSCAD/EMTDC simulator and investigates the influence that can occur in the grid-connected PV system from aspect of power quality, i.e. voltage drop, total harmonic distortion(TDD) and total demand distortion(TDD). For the case study, the measured data of the PV way in Cheongwadae, Seoul, Korea is used.

High-Efficiency Power Conditioning System for Grid-Connected Photovoltaic Modules

  • Choi, Woo-Young;Choi, Jae-Yeon
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.561-567
    • /
    • 2011
  • This paper presents a high-efficiency power conditioning system (PCS) for grid-connected photovoltaic (PV) modules. The proposed PCS consists of a step-up DC-DC converter and a single-phase DC-AC inverter for the grid-connected PV modules. A soft-switching step-up DC-DC converter is proposed to generate a high DC-link voltage from the low PV module voltage with a high-efficiency. A DC-link voltage controller is presented for constant DC-link voltage regulation. A half-bridge inverter is used for the single-phase DC-AC inverter for grid connection. A grid current controller is suggested to supply PV electrical power to the power grid with a unity power factor. Experimental results are obtained from a 180 W grid-connected PV module system using the proposed PCS. The proposed PCS achieves a high power efficiency of 93.0 % with an unity power factor for a 60 Hz / 120 Vrms AC power grid.

Monitoring and Analysis of 3kW Grid-Connected PV System for Performance Evaluation

  • So Jung-Hun;Jung Young-Seok;Yu Gwon-Jong;Choi Ju-Yeop;Choi Jae-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.1
    • /
    • pp.57-62
    • /
    • 2005
  • Grid-connected photovoltaic (PV) systems were installed and monitored at the field demonstration test center (FDTC) in Korea in October 2002. Before long-term field testing of installed PV systems, the performances of PV components were evaluated and compared through short-term performance tests of each of the PV system components such as power conditioning system and PV module under standard test conditions. A data acquisition system has been constructed for measuring and analyzing the performance of PV systems to observe the overall effect of environmental conditions on their operation characteristics. Performances of PV systems have been evaluated and analyzed not only for component perspective (PV array, power conditioning unit) but also for global perspective (system efficiency, capacity factor, electrical power energy) by review of the field test and loss factors of the systems. These results indicate that it is highly imperative to develop an optimum design technology of grid connected PV systems. The objective of this paper is not only to evaluate and analyze the performance of domestic PV systems application through long-term field testing at FDTC but also to develop evaluation, analysis and optimum technology for long-term stability and reliability of grid-connected PV systems in Korea.

Novel Islanding Detection Method using Frequency Drift for Grid-connected PV System (계통연계형 태양광발전 시스템의 주파수 변동에 의한 새로운 고립운전 검출기법)

  • Eun Suk-Jun;;;Lee Dong-Chun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.6
    • /
    • pp.294-302
    • /
    • 2005
  • PV system's islanding occurs when the uitilty grid is removed but local sources continue to operate and provide power to local loads. Islanding is one of the serious problems in an electric power system connected with dispersed power sources. Also, this can present safety hazards and the possibility of damage to other electric equipments. If the real and reactive power of RLC load and PV system are closely matched, islanding detection by passive methods becomes difficult. This paper shows the simulation and comparision for the previous active methods and novel islanding detection method using frequency drift is proposed for grid-connected PV system.

Design and Implementation of a Low Cost Grid-Connected 5 kVA Photovoltaic System with Load Compensation Capability

  • Mejdar, Reza Seifi;Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2306-2314
    • /
    • 2016
  • Design and implementation of a low cost grid-connected 5kVA solar photovoltaic (PV) system is proposed in this paper. Since the inverter is a major component of the PV system, the B4 inverter used in this paper reduces the total cost of the PV system. In order to eliminate the massive transformer, the PV system is connected to the grid through IGBT switches. In addition to injection of active power into the grid, the B4 inverter can compensate reactive power and reduce harmonics of the nonlinear loads. A TMS320F28335 DSP processor is used for effective control of the B4 inverter. Various features of this processor enable the implementation of the necessary control algorithms. As a first step, the PV system is simulated and evaluated in Matlab/Simulink. In the second step, hardware circuits are designed and implemented based on the simulation results. The operation of the PV system has been evaluated under balanced, unbalanced, linear and nonlinear loads which proves its accuracy and efficiency.

A Study on Performance Analysis of 3kW Grid-Connected PV Systems (3kW급 계통연계형 태양광발전시스템의 성능특성 비교분석에 관한 연구)

  • So, Jung-Hun;Choi, Ju-Yeop;Yu, Gwon-Jong;Jung, Young-Seok;Choi, Jae-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.2
    • /
    • pp.9-15
    • /
    • 2004
  • 3kW grid connected PV(photovoltaic) systems have been constructed for evaluating and analyzing performance of PV system at FDTC(field demonstration test center) in Korea, PV systems installed in FDTC have been operating and monitored since November 2002. As climatic and irradiation conditions have been varied through long-term field test, data acquisition system has been constructed for measuring performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV systems has been evaluated and analyzed for component perspective(PV array and power conditioning system) and global perspective(system efficiency, capacity factor, and electrical power energy) by field test. By the results, it is very important to develop optimal design technology of grid connected PV system.

Performance Analysis of 100kWp Photovoltaics System in Tibet (중국 티베트 지역의 100kWp급 태양광발전시스템 성능분석)

  • Kim, Seok-Ki;Choi, Bong-Ha;Park, Soo-Uk;Song, Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.284-287
    • /
    • 2007
  • This paper presents the performance evaluation of PV systems installed at Tibet area of China in order to identity the key factors that determines system operation at a severe climate conditions and promote the cooperation of PV technology between Korea and China. The installed systems consist of 100kW on-grid connected PV systems, BOS(balance of systems), data acquisition and transmission equipments. The Korea side supplied the solar cell, BOS like as inverter, control box and monitoring system. And the Chinese side assembled solar module, constructed site and built control house. It has been shown that the average radiation per monthly from Tibet is 1.5 times larger than that from Mokpo. Also, radiation time from Tibet is 2hour higher than that from Korea. The economical analysis has shown that with the current prices, investment in a grid connected PV systems is generally profitable

  • PDF

Performance Analysis and Evaluation of 3kW Grid-Connected PV Systems (3kW급 계통연계형 태양광발전시스템의 성능특성 평가분석)

  • So, Jung-Hun;Jung, Young-Seok;Yu, Gwon-Jong;Choi, Ju-Yeop;Choy, Ick
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.509-516
    • /
    • 2004
  • The concerns of distributed generations including photovoltaic(PV) system have been increased around the world since PV system is becoming widespread as a clean and gentle energy source for earth. In the future high density grid-connected PV systems will be interconnected with distribution network. As a result, the stability and long-term reliability of PV systems have become more important issues in this area. Grid-connected PV systems have been installed and monitored at field demonstration test center(FDTC) and also data acquisition system(DAS) has been constructed for measuring and analyzing performance of PV system to observe the overall effect of environmental conditions on their operation characteristics. The performance of PV system has been evaluated and analyzed for component perspective (PV array and power conditioning system) and global perspective (system efficiency, capacity factor, and electrical power energy) by field test and loss factors of PV system.

Grid Connected PV System with a Function to Suppress Disturbances caused by Solar-cell Array Instantaneous Output Power Fluctuation (태양전지어레이 순시 출력변동에 의한 외란의 억제기능을 갖는 계통연계형 태양광발전 시스템)

  • Kim, Hong-Sung;Choe, Gyu-Ha;Yu, Gwon-Jong
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.63-69
    • /
    • 1999
  • The conventional grid connected PV(Photovoltaic) system has a unstable output pattern due to its dependence on the weather condition, although solar-cell array averagely has a regular output characteristics to have a peak output nearly at noon. Therefore assuming the high density grid connection in the future, this unstable output pattern can be one of the main reasons to generate power disturbance such as voltage variation, frequency variation and harmonic voltage generation in low voltage distribution line. However general grid connected solar-cell system do not have functions to cope with these disturbances. Therefore this study proposed a advanced type grid connected PV system with functions to suppress output power fluctuation due to solar-cell array output variation and showed the levelling effect of fluctuation due to instantaneous array output variation.

  • PDF

The study on construction of the practical testing ground of grid-connected photovoltaic system (태양광발전 계통연계 실증시험장 구축에 관한 연구)

  • Kim, Euihwan;Jang, Juyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • Currently the variety of governmental business support and research for supplying solar energy have been actively progressed. As of now, however, There are no practical testing infrastructures of grid-connected photovoltaic system which test performance of solar power facility in domestic. Therefore, in KEPRI, there is in progress construction of practical testing ground of 500 kW class grid-connected PV System for developing the evaluation of the performance technology including the Module, PCS, and etc, that is the important instrument of the PV System, in Gochang area. It analyzed the site creation work for constructing the practical testing ground and new construction of control room and the unit standards, specifications and capacity of required equipment. For the system detailed design, configuration, instrument-specific parameters established, power generation predictions of Array Type and the components of testing ground are needed to build.

  • PDF