• Title/Summary/Keyword: Grid-based data

Search Result 1,152, Processing Time 0.029 seconds

Comparison of Forest Carbon Stocks Estimation Methods Using Forest Type Map and Landsat TM Satellite Imagery (임상도와 Landsat TM 위성영상을 이용한 산림탄소저장량 추정 방법 비교 연구)

  • Kim, Kyoung-Min;Lee, Jung-Bin;Jung, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.449-459
    • /
    • 2015
  • The conventional National Forest Inventory(NFI)-based forest carbon stock estimation method is suitable for national-scale estimation, but is not for regional-scale estimation due to the lack of NFI plots. In this study, for the purpose of regional-scale carbon stock estimation, we created grid-based forest carbon stock maps using spatial ancillary data and two types of up-scaling methods. Chungnam province was chosen to represent the study area and for which the $5^{th}$ NFI (2006~2009) data was collected. The first method (method 1) selects forest type map as ancillary data and uses regression model for forest carbon stock estimation, whereas the second method (method 2) uses satellite imagery and k-Nearest Neighbor(k-NN) algorithm. Additionally, in order to consider uncertainty effects, the final AGB carbon stock maps were generated by performing 200 iterative processes with Monte Carlo simulation. As a result, compared to the NFI-based estimation(21,136,911 tonC), the total carbon stock was over-estimated by method 1(22,948,151 tonC), but was under-estimated by method 2(19,750,315 tonC). In the paired T-test with 186 independent data, the average carbon stock estimation by the NFI-based method was statistically different from method2(p<0.01), but was not different from method1(p>0.01). In particular, by means of Monte Carlo simulation, it was found that the smoothing effect of k-NN algorithm and mis-registration error between NFI plots and satellite image can lead to large uncertainty in carbon stock estimation. Although method 1 was found suitable for carbon stock estimation of forest stands that feature heterogeneous trees in Korea, satellite-based method is still in demand to provide periodic estimates of un-investigated, large forest area. In these respects, future work will focus on spatial and temporal extent of study area and robust carbon stock estimation with various satellite images and estimation methods.

Process Development for Optimizing Sensor Placement Using 3D Information by LiDAR (LiDAR자료의 3차원 정보를 이용한 최적 Sensor 위치 선정방법론 개발)

  • Yu, Han-Seo;Lee, Woo-Kyun;Choi, Sung-Ho;Kwak, Han-Bin;Kwak, Doo-Ahn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.3-12
    • /
    • 2010
  • In previous studies, the digital measurement systems and analysis algorithms were developed by using the related techniques, such as the aerial photograph detection and high resolution satellite image process. However, these studies were limited in 2-dimensional geo-processing. Therefore, it is necessary to apply the 3-dimensional spatial information and coordinate system for higher accuracy in recognizing and locating of geo-features. The objective of this study was to develop a stochastic algorithm for the optimal sensor placement using the 3-dimensional spatial analysis method. The 3-dimensional information of the LiDAR was applied in the sensor field algorithm based on 2- and/or 3-dimensional gridded points. This study was conducted with three case studies using the optimal sensor placement algorithms; the first case was based on 2-dimensional space without obstacles(2D-non obstacles), the second case was based on 2-dimensional space with obstacles(2D-obstacles), and lastly, the third case was based on 3-dimensional space with obstacles(3D-obstacles). Finally, this study suggested the methodology for the optimal sensor placement - especially, for ground-settled sensors - using the LiDAR data, and it showed the possibility of algorithm application in the information collection using sensors.

Connectivity Assessment Based on Circuit Theory for Suggestion of Ecological Corridor (생태축 제안을 위한 회로 이론 기초 연결성 평가)

  • Yoon, Eun-Joo;Kim, Eun-Young;Kim, Ji-Yeon;Lee, Dong Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.275-286
    • /
    • 2019
  • In order to prevent local extinction of organisms and to preserve biodiversity, it is important to ensure connectivity between habitats. Even if the habitat is exposed to various disturbance factors, it is possible to avoid or respond to disturbances if they are linked to other habitats. Habitat connectivity can be assessed from a variety of perspectives, but the importance of functional connectivity based on species movement has been emphasized in recent years due to the development of computational capabilities and related software. Among them, Circuitscape, which is a connectivity evaluation tool, has an advantage it can provide detailed reference data for the city planning because it maps ecological flows on individual grid based on circuit theory. Therefore, in this study, the functional connectivity of Suwon was evaluated by applying Circuitscape and then, the ecological corridor to be conserved and supplemented was suggested based on it. The results of this study are expected to effectively complement the methodology related ecological corridor/axis, which was previously provided only in the form of a diagram, and to be effective in management of development project and urban planning.

Explainable Photovoltaic Power Forecasting Scheme Using BiLSTM (BiLSTM 기반의 설명 가능한 태양광 발전량 예측 기법)

  • Park, Sungwoo;Jung, Seungmin;Moon, Jaeuk;Hwang, Eenjun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.339-346
    • /
    • 2022
  • Recently, the resource depletion and climate change problem caused by the massive usage of fossil fuels for electric power generation has become a critical issue worldwide. According to this issue, interest in renewable energy resources that can replace fossil fuels is increasing. Especially, photovoltaic power has gaining much attention because there is no risk of resource exhaustion compared to other energy resources and there are low restrictions on installation of photovoltaic system. In order to use the power generated by the photovoltaic system efficiently, a more accurate photovoltaic power forecasting model is required. So far, even though many machine learning and deep learning-based photovoltaic power forecasting models have been proposed, they showed limited success in terms of interpretability. Deep learning-based forecasting models have the disadvantage of being difficult to explain how the forecasting results are derived. To solve this problem, many studies are being conducted on explainable artificial intelligence technique. The reliability of the model can be secured if it is possible to interpret how the model derives the results. Also, the model can be improved to increase the forecasting accuracy based on the analysis results. Therefore, in this paper, we propose an explainable photovoltaic power forecasting scheme based on BiLSTM (Bidirectional Long Short-Term Memory) and SHAP (SHapley Additive exPlanations).

Soil Loss and Pollutant Load Estimation in Sacheon River Watershed using a Geographic Information System (GIS를 이용한 동해안 하천유역의 토양유실량과 오염부하량 평가 -사천천을 중심으로-)

  • Cho, Jae-Heon;Yeon, Je-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.7
    • /
    • pp.1331-1343
    • /
    • 2000
  • Through the integration of USLE and GIS, the methodology to estimate the soil loss was developed, and applicated to the Sacheon river in Gangrung. Using GIS, spatial analysis such as watershed boundary determination, flow routing. slope steepness calculation was done. Spatial information from the GIS application was given for each grid. With soil and land use map, information about soil classification and land use was given for each grid too. Based upon these data, thematic maps about the factors of USLE were made. We estimated the soil loss by overlaying the thematic maps. In this manner, we can assess the degree of soil loss for each grid using GIS. Annual average soil loss of Sacheon river watershed is 1.36 ton/ha/yr. Soil loss in forest, dry field, and paddy field is 0.15 ton/ha/yr, 27.04 ton/ha/yr, 0.78 ton/ha/yr respectively. The area of dry field, which is 4% of total area, is $2.4km^2$. But total soil loss of dry field is 6561 ton/yr, and it occupies 84.9 % of total soil loss eroded in Sacheon river watershed. Comparing with the 11.2 ton/ha/yr of an average soil loss tolerance for cropland, provision for the soil loss in dry field is necessary. Run-off and water quality of Sacheon river were measured two times in flood season: from July 24, 1998 to July 28 and from September 29 to October 1. As the run-off of the river increased, SS, TN, TP concentrations and pollutant loadings increased. SS, TN, TP loads of Sacheon river discharged during the 2 heavy rains were 21%, 39%, and 19% of the total pollutant loadings generated in the Sacheon river watershed for one year. We can see that much pollutants are discharged in short period of flood season.

  • PDF

Wave Simulation for Submarine Cable Route of Southwest Sea Offshore Wind Farm Using the SWAN Model (SWAN 모델을 이용한 서남해 해상풍력단지 해저케이블 경과지의 파랑 수치모의)

  • Ryu, Hwang-Jin;Kim, Sang-Ho;Kwoun, Chul-Hui;Cho, Kwang-Woo;Maeng, Jun-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.583-590
    • /
    • 2015
  • Submarine cable installation is essentials for grid connection between existing power grid and newly produced electricity which will be from offshore wind farm in Southwest sea area of Korea. Especially, submarine cable route and protection method is designed in order to ensure the economical efficiency, workability and stability of submarine cable installation. On this paper, we will give the basic information about the submarine cable route and protection method of offshore wind farm which will be built in Southwest sea area of Korea. For this, we have a numerical simulation at high and low tide based on the third-generation wave model SWAN(Simulating WAves Nearshore) using the long term wave data from Korea Institute of Ocean Science and Technology(KIOST). The results of the study, year mean Hs is 1.03m, Tz is 4.47s and dominant wave direction is NW and SSW When the incident wave direction is NW(Hs: 7.0 m, Tp: 11.76s), the distribution of shallow water design wave height Hs was calculated about 4.0~5.0m at high tide and 2.0~3.0m at low tide. When the incident wave direction is SSW(Hs: 5.84 m, Tp: 11.15s), the distribution of shallow water design wave height Hs was calculated about 3.5~4.5m at high tide and 1.5~2.5m at low tide. The wave direction on a dominant influence in the section of longitude UTM 249749~251349(about 1.6 km) and UTM 251549~267749(about 16.2 km) in the submarine cable route are each NW and SSW. Prominently, wave focusing phenomenon appears between Wi-do and Hawangdeung-do, in this sea area is showing a relatively high wave hight than the surrounding sea areas.

Applicability of Sobaek Radar Rain for Flood Routing of Chungju Dam Watershed (충주댐 유역 홍수추적을 위한 소백산 레이더 강우자료의 적용성 검토)

  • Ahn, So-Ra;Park, Hye-Sun;Han, Myoung-Sun;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.1
    • /
    • pp.129-143
    • /
    • 2014
  • The purpose of this study is to evaluate the availability of dual-polarization radar rain for flood routing in Chungju Dam watershed($6,625.8km^2$) using KIMSTORM (Grid-based KIneMatic wave STOrm Runoff Model). The Sobaek dual-polarization radar data for 1 heavy rain and 3 typhoon(Khanun, Bolaven, and Sanba) events in 2012 were obtained from Han River Flood Control Office. The spatio-temporal patterns between the two data were similar showing the ratio of radar rain to ground rain with 0.97. The KIMSTORM was set to $500{\times}500m$ resolution and a total of 45,738 cells(198 rows${\times}$231 columns) for the watershed. For radar rain and 41 ground rains, the model was independently calibrated using discharge data at 3 streamflow gauging stations(YW1, YC, and CJD) with coefficient of determination($R^2$), Nash and Sutcliffe Model Efficiency(ME), and Volume Conservation Index(VCI). The $R^2$, ME, and VCI 0.80, 0.62 and 1.08 for radar rain and 0.83, 0.68 and 1.10 for ground rain respectively.

Sensitivity Analysis on the Population within and outside of the Urban Park Service Areas - Focused on Daegu Metropolitan City Neighborhood Parks and Resident Registration Number Data - (도시공원 서비스권역 내 · 외 이용인구 정밀 분석 - 대구광역시 근린공원, 주민등록 데이터 분석을 중심으로 -)

  • Son, Seung-Woo;Ahn, Tong-Mahn
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.5
    • /
    • pp.9-18
    • /
    • 2013
  • Urban parks are public spaces that provide various services for any urban resident to use and enjoy. Parks should be fairly distributed so that the urban parks can be equally used amongst different regions, generations and classes. Researches on spatial distribution of urban parks have been continuously conducted from the past based on the principles of fairness with variety, and it was evident that their techniques have become more elaborate and sophisticated. Yet, there have been limitations in the analysis of residents who are the main users of the urban parks. The research done so far was unable to apply the real number of the residents and it was carried out by only classifying and analyzing the population by the same scale(grid in the same sizes), postal(zip) code and administrative district. The actual population that resides within the usable range of urban parks was not used. This study analyzes and evaluates the spatial distribution that the residents can use on foot, by utilizing the service areas and the residents' registration data by addresses. In this study, to analyze the square measure of the service areas of neighborhood parks in Daegu Metropolitan City and the number of residents within and outside of the service area, network analysis techniques were employed and the residents' registration data were utilized. Major findings were that the Square measure of service areas of neighborhood parks turned out to be 31.23% of the square measure of the residential areas and also, that only 43.03% of the population of the Daegu Metropolitan area lives within the service areas of the neighborhood parks.

A Hybrid Dasymetric Mapping for Population Density Surface using Remote Sensing Data (원격탐사자료를 바탕으로 인구밀도 분포 작성을 위한 하이브리드 대시메트릭 지도법)

  • Kim, Hwa-Hwan;Choi, Jin-Mu
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.1
    • /
    • pp.67-80
    • /
    • 2011
  • Choropleth mapping of population distribution is based on the assumption that people are uniformly distributed throughout each enumeration unit. Dasymetric mapping technique improves choropleth mapping by refining spatially aggregated data with residential information. Further, pycnophylactic interpolation can upgrade dasymetric mapping by considering population distribution of neighboring areas, while preserving the volumes of original units. This study proposed a combined solution of dasymetric mapping and pycnophylactic interpolation to improve the accuracy of population density distribution. Specifically, the dasymetric method accounts for the spatial distribution of population within each census unit, while pycnophylactic interpolation considers population distribution of neighboring area. This technique is demonstrated with 1990 census data of the Athens, GA. with land use land cover information derived from remotely-sensed imagery for the areal extent of populated areas. The results are evaluated by comparison between original population counts of smaller census units (census block groups) and population counts of the grid map built from larger units (census tracts) aggregated to the same areal units. The estimated populations indicate a satisfactory level of accuracy. Population distribution acquired by the suggested method can be re-aggregated to any type of geographic boundaries such as electoral boundaries, school districts, and even watershed for a variety of applications.

New Contention Window Control Algorithm for TCP Performance Enhancement in IEEE 802.11 based Wireless Multi-hop Networks (IEEE 802.11 기반 무선 멀티홉 망에서 TCP의 성능향상을 위한 새로운 경쟁 윈도우 제어 알고리즘)

  • Gi In-Huh;Lee Gi-Ra;Lee Jae-Yong;Kim Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.165-174
    • /
    • 2006
  • In this paper, we propose a new contention window control algorithm to increase TCP performance in wireless multi-hop networks. The new contention window control algorithm is suggested to reduce the hidden and exposed terminal problems of wireless multi-hop networks. Most of packet drops in wireless multi-hop networks results from hidden and exposed terminal problems, not from collisions. However, in normal DCF algorithm a failed user increases its contention window exponentially, thus it reduces the success probability of fined nodes. This phenomenon causes burst data transmissions in a particular node that already was successful in packet transmission, because the success probability increases due to short contention window. However, other nodes that fail to transmit packet data until maximum retransmission attempts try to set up new routing path configuration in network layer, which cause TCP performance degradation and restrain seamless data transmission. To solve these problems, the proposed algorithm increases the number of back-of retransmissions to increase the success probability of MAC transmission, and fixes the contention window at a predetermined value. By using ns-2 simulation for the chain and grid topology, we show that the proposed algorithm enhances the TCP performance.