• 제목/요약/키워드: Grid voltage

검색결과 1,134건 처리시간 0.029초

3상 인버터의 계통 연계를 위한 동기화 방법론에 대한 연구 (A Study on the Synchronization Methodology for Grid-connection of Three Phase Inverter)

  • 임병석;이준성;웬황난;잔반탄;고윤석
    • 한국전자통신학회논문지
    • /
    • 제14권5호
    • /
    • pp.951-958
    • /
    • 2019
  • 분산 전원의 계통 연계를 위해서는 연계 전에 분산 전원 출력전압을 계통전압과 동기화시켜야 하는데, 전압의 크기, 위상 그리고 주파수를 일치시키는 문제이기 때문에 쉽지 않다. 본 연구에서는 3상 인버터의 계통 연계를 위한 벡터제어 기반의 동기화 알고리즘을 개발하였다. 하나의 3상 전압형 인버터를 설계, 제작하여 개발된 알고리즘의 유효성을 검증하였다. 3상 인버터의 주제어장치는 DSP 기반으로 개발되었고, 계통의 전기적인 레벨은 실험실에서 실험이 가능한 전기적 레벨로 하였다. 그리고 실험을 통하여 3상 인버터의 출력전압이 계통전압을 추종하여 동기화를 이루는 것을 보임으로서 제시된 알고리즘이 계통 연계를 위한 동기화 알고리즘으로 활용될 수 있음을 확인될 수 있었다.

자속 추종을 통한 DFIG 시스템의 LVRT 기법 (LVRT Scheme for Doubly Fed Induction Generator Systems Based on Flux Tracking Method)

  • 박선영;전영환;이동명
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1059-1065
    • /
    • 2013
  • Doubly Fed Induction Generator(DFIG) systems occupy the largest proportion of worldwide wind energy generation market. DFIG systems are very sensitive to grid disturbances especially to voltage dips due to the structure of the stator connected to grid. In the past, when a grid fault occurs generators are separated from grid(trip method) in order to protect the systems. Nowadays, due to the growing penetration level of wind power, many countries have made some requirements that wind turbines are required to have Low Voltage Ride Through(LVRT) capability during grid faults. In this paper, a flux tracking LVRT control strategy based on system modeling equations is proposed. The validity of the proposed strategy is verified through computer simulations.

A Grid Current-Controlling Shunt Active Power Filter

  • Tumbelaka, Hanny H.;Borle, Lawrence J.;Nayar, Chemmangot V.;Lee, Seong-Ryong
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.365-376
    • /
    • 2009
  • In this paper, the implementation of a three-phase shunt active power filter is presented. The filter is essentially three independent single-phase current-controlled voltage source inverters (CC-VSI) with a common DC bus. The CC- VSI is operated to directly control the AC grid current to be sinusoidal and in phase with the grid voltage without detecting the load currents. The APF consists of a current control loop, which shapes the grid currents to be sinusoidal and a voltage control loop, which regulates the active power balance of the system. The experimental results indicate that the active filter is able to handle predominantly the harmonics, as well as the unbalance and reactive power, so that the grid currents are sinusoidal, in phase with the grid voltages and symmetrical.

전향보상 전압의 위상 변화를 통한 단독운전 검출 방법의 계통 정상 상태의 성능 평가 (Performance Evaluation of Islanding Detection Method by Phase Shifted Feed-Forward Voltage in Steady-State Grid Condition)

  • 김동욱;김성민
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.373-380
    • /
    • 2018
  • This study proposes a new islanding detection method that uses the phase shift of feed-forward voltage and evaluates the performance of an existing method and the proposed method when the grid frequency changes within the allowable range under steady-state conditions. The investigated existing method, which is slip mode frequency shift (SMS), uses current phase shift to detect islanding. The SMS method supplies reactive current to the grid under this condition, but the proposed method does not generate additional reactive power because it does not depend on the current control loop. The performance in steady-state grid condition is evaluated through simulations and experiments.

마이크로그리드에서 계통연계 인버터의 자율적이며 끊김없는 모드전환 기법 (A Seamless and Autonomous Mode Transfer Method of Grid-connected Inverter in Microgrid)

  • 박성열;권민호;최세완
    • 전력전자학회논문지
    • /
    • 제24권5호
    • /
    • pp.349-355
    • /
    • 2019
  • A grid-connected inverter with critical loads should be able to supply a stable voltage to critical loads at mode change and during clearing time while detecting unintentional islanding. This study proposes a mode transfer method for a grid-connected inverter with critical loads. The proposed method, which integrates the grid-connected and islanded mode control loops into one control block, provides an autonomous and seamless mode transfer from the current control to the voltage control. Therefore, the proposed scheme can supply a stable voltage to critical loads at mode change and during clearing time. Experimental results are provided to validate the proposed method.

Research on a Multi-Objective Control Strategy for Current-source PWM Rectifiers under Unbalanced and Harmonic Grid Voltage Conditions

  • Geng, Yi-Wen;Liu, Hai-Wei;Deng, Ren-Xiong;Tian, Fang-Fang;Bai, Hao-Feng;Wang, Kai
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.171-184
    • /
    • 2018
  • Unbalanced and distorted grid voltages cause the grid side current of a current source PWM rectifier to be heavily distorted. They can also cause the DC-link current to fluctuate with a huge amplitude. In order to enhance the performance of a current-source PWM rectifier under unbalanced and harmonic grid voltage conditions, a mathematical model of a current-source PWM rectifier is established and a flexible multi-objective control strategy is proposed to control the DC-link current and grid-current. The fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic components of the grid voltage are first separated with the proposed control strategy. The grid current reference are optimized based on three objectives: 1) sinusoidal and symmetrical grid current, 2) sinusoidal grid current and elimination of the DC-current $2^{nd}$ order fluctuations, and 3) elimination of the DC-current $2^{nd}$ and $6^{th}$ order fluctuations. To avoid separation of the grid current components, a multi-frequency proportional-resonant controller is applied to control the fundamental positive/negative sequence, $5^{th}$ and $7^{th}$ order harmonic current. Finally, experimental results verify the effectiveness of proposed control strategy.

불평형 계통전압에 강인한 연료전지용 전력변환시스템의 PLL 방법 (A Robust PLL of PCS for Fuel Cell System under Unbalanced Grid Voltages)

  • 김윤현;김왕래;임창진;김광섭;권병기;최창호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.103-105
    • /
    • 2008
  • In grid-interconnection system, a fast, robust and precise phase angle detector is most important to grid synchronization and the active power control. The phase angle can be easily estimated by synchronous dq PLL system. On the other hand under unbalanced voltage condition, synchronous dq PLL system has problem that harmonics occur to phase angle or magnitude of grid voltage because of the effect of the negative sequence components. So, To eliminate the negative sequence components, the PLL method using APF (All Pass Filter) in a stationery reference frame to extract positive sequence components under unbalanced voltage condition is researched. In this paper, we propose a new PLL method with decoupling network using APF in a synchronous reference frame to extract the positive sequence components of the grid voltage under unbalanced grid. The cut-off frequency of APF in a synchronous reference frame can be set to twice of the fundamental frequency comparing with that of APF in a stationery reference frame which is the fundamental frequency. The proposed PLL strategy can detect the phase angle quickly and accurately under unbalanced gird voltages. Simulation and experimental results are presented to verify the proposed strategy under different kind of voltage dips.

  • PDF

Control Strategy for Three-Phase Grid-Connected Converters under Unbalanced and Distorted Grid Voltages Using Composite Observers

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.469-478
    • /
    • 2013
  • This paper proposes a novel scheme for the current controller for the grid-side converter (GSC) of permanent-magnet synchronous generator (PMSG) wind turbines to eliminate the high-order harmonics in the grid currents under grid voltage disturbances. The voltage unbalance and harmonics in three-phase systems cause grid current distortions. In order to mitigate the input current distortions, multi-loop current controllers are applied, where the positive-sequence component is regulated by proportional-integral (PI) controllers, and the negative-sequence and high-order harmonic components are regulated by proportional-resonance (PR) controllers. For extracting the positive/negative-sequence and harmonic components of the grid voltages and currents without a phase delay or magnitude reduction, composite observers are applied, which give faster and more precise estimation results. In addition, an active damping method using PR controllers to damp the grid current component of the resonant frequency is employed to improve the operating stability of VSCs with inductor-capacitor-inductor (LCL) filters. The validity of the proposed method is verified by simulation and experimental results.

Hybrid Secondary Voltage Control combined with Large-Scale Wind Farms and Synchronous Generators

  • Kim, Jihun;Lee, Hwanik;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.399-405
    • /
    • 2014
  • For stable integration of large-scale wind farms, integration standards (Grid codes) have been proposed by the system operator. In particular, voltage control of large-scale wind farms is gradually becoming important because of the increasing size of individual wind farms. Among the various voltage control methods, Secondary Voltage Control (SVC) is a method that can control the reactive power reserve of a control area uniformly. This paper proposes hybrid SVC when a large-scale wind farm is integrated into the power grid. Using SVC, the burden of a wind turbine converter for generating reactive power can be reduced. To prove the effectiveness of the proposed strategy, a simulation study is carried out for the Jeju system. The proposed strategy can improve the voltage conditions and reactive power reserve with this hybrid SVC.

단상 계통연계형 태양광 발전 시스템의 직류링크 맥동전압 보상 (DC link Ripple Voltage Compensation of a Single-phase Grid-Connected PV System)

  • 이재근;최종우
    • 전력전자학회논문지
    • /
    • 제17권5호
    • /
    • pp.377-387
    • /
    • 2012
  • A single-phase grid-connected PV system is known as suitable for housing of less than 3 kW. The DC link voltage in a single-phase PV system has necessarily twice component of fundamental wave. It makes high THD in the grid current. According to the problem, power quality is lower. Many engineers have studied about this problem. The most simple method is to use low pass filter on DC link voltage control. However it is affected by DC link voltage control bandwidth. If cutoff frequency is reduced to increase the performance of low pass filter, it also lowers DC link voltage control bandwidth. Second method is using band stop filter, it works good on steady state but not good on transient state. This paper proposes the new method for removing ripple voltage to get an exact current reference. It improves the responses on steady state and transient state. The performance was verified through computer simulation using MATLAB and actual experiments.