• Title/Summary/Keyword: Grid generation

Search Result 1,129, Processing Time 0.028 seconds

Study on the Propagation Speed of the wide-area power system frequency for the application of FNET (광역 전력계통 주파수 감시망 적용을 위한 광역계통주파수의 전파속도에 관한 연구)

  • Kook, Kyung-Soo;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1824-1831
    • /
    • 2009
  • This paper analyzes the propagation speed of the wide-area power system frequency. When a generator supplying the electric power to the grid is accidently tripped due to a disturbance on the systems, power system frequency suddenly drops during the transient period and this propagates from the location of the tripped generator to the other part of the systems like a wave. Since the propagation speed of the power system frequency depends on the own characteristics of power systems, its understanding from the perspective of the wide-area can help us in understanding power systems more correctly. In addition, the propagation speed of the power system frequency is used as a key parameter in the application study of IT based on the internet-based GPS synchronized frequency monitoring network (FENT) which has been recently implemented and operated in U.S. power systems. This paper simulates the generation trip on various locations in U.S. power systems deploying its latest dynamic model and calculates the propagation speed of the power system frequency for the application of FNET.

Supercapacitor Energy Storage System for the Compensation of Fuel Cell Response Characteristics (연료전지 응답특성 보상용 슈퍼커패시터 에너지 저장 시스템)

  • Song, Woong-Hyub;Jung, Jae-Hun;Kim, Jin-Young;Nho, Eui-Cheol;Kim, In-Dong;Kim, Heung-Geun;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.440-447
    • /
    • 2011
  • This paper deals with supercapacitor energy storage system for the compensation of the slow response characteristics of a fuel cell generation system for grid connection. A bidirectional dc/dc converter is used for the charging and discharging of the supercapacitor. The conventional converters use additional clamping circuit, etc. to reduce a voltage spike at the instant of switching and to provide wide range of soft switching. The proposed method provides simplified hardware implementation without any clamping circuit, and soft switching condition for both charging and discharging mode with proper switching patterns. The usefulness of the proposed scheme is verified through simulation and experimental results with 1 kW system.

DOES LACK OF TOPOGRAPHIC MAPS LIMIT GEO-SPATIAL HYDROLOGY ANALYSYS?

  • Gangodagamage, Chandana;Flugel, Wolfgang;Turrel, Dr.Hagh
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.82-84
    • /
    • 2003
  • Watershed boundaries and flow paths within the watershed are the most important factors required in watershed analysis. Most often the derivation of watershed boundaries and stream network and flow paths is based on topographical maps but spatial variation of flow direction is not clearly understandable using this method. Water resources projects currently use 1: 50, 000-scale ground survey or aerial photography-based topographical maps to derive watershed boundary and stream network. In basins, where these maps are not available or not accessible it creates a real barrier to watershed geo-spatial analysis. Such situations require the use of global datasets, like GTOPO30. Global data sets like ETOPO5, GTOPO30 are the only data sets, which can be used to derive basin boundaries and stream network and other terrain variations like slope aspects and flow direction and flow accumulation of the watershed in the absence of topographic maps. Approximately 1-km grid-based GTOPO 30 data sets can derive better outputs for larger basins, but they fail in flat areas like the Karkheh basin in Iran and the Amudarya in Uzbekistan. A new window in geo-spatial hydrology has opened after the launching of the space-borne satellite stereo pair of the Terra ASTER sensor. ASTER data sets are available at very low cost for most areas of the world and global coverage is expected within the next four years. The DEM generated from ASTER data has a reasonably good accuracy, which can be used effectively for hydrology application, even in small basins. This paper demonstrates the use of stereo pairs in the generation of ASTER DEMs, the application of ASTER DEM for watershed boundary delineation, sub-watershed delineation and explores the possibility of understanding the drainage flow paths in irrigation command areas. All the ASTER derived products were compared with GTOPO and 1:50,000-based topographic map products and this comparison showed that ASTER stereo pairs can derive very good data sets for all the basins with good spatial variation, which are equal in quality to 1:50,000 scale maps-based products.

  • PDF

CORE DESIGN FOR HETEROGENEOUS THORIUM FUEL ASSEMBLIES FOR PWR (II) - THERMAL HYDRAULIC ANALYSIS AND SPENT FUEL CHARACTERISTICS

  • BAE KANG-MOK;HAN KYU-HYUN;KIM MYUNG-HYUN;CHANG SOON-HEUNG
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.363-374
    • /
    • 2005
  • A heterogeneous thorium-based Kyung Hee Thorium Fuel (KTF) assembly design was assessed for application in the APR-1400 to study the feasibility of using thorium fuel in a conventional pressurized water reactor (PWR). Thermal hydraulic safety was examined for the thorium-based APR-1400 core, focusing on the Departure from Nucleate Boiling Ratio (DNBR) and Large Break Loss of Coolant Accident (LBLOCA) analysis. To satisfy the minimum DNBR (MDNBR) safety limit condition, MDNBR>1.3, a new grid design was adopted, that enabled grids in the seed and blanket assemblies to have different loss coefficients to the coolant flow. The fuel radius of the blanket was enlarged to increase the mass flow rate in the seed channel. Under transient conditions, the MDNBR values for the Beginning of Cycle (BOC), Middle of Cycle (MOC), and End of Cycle (EOC) were 1.367, 1.465, and 1.554, respectively, despite the high power tilt across the seed and blanket. Anticipated transient for the DNBR analysis were simulated at conditions of $112\%$ over-power, $95\%$ flow rate, and $2^{\circ}C$ higher inlet temperature. The maximum peak cladding temperature (PCT) was 1,173K for the severe accident condition of the LBLOCA, while the limit condition was 1,477K. The proliferation resistance potential of the thorium-based core was found to be much higher than that of the conventional $UO_2$ fuel core, $25\%$ larger in Bare Critical Mass (BCM), $60\%$ larger in Spontaneous Neutron Source (SNS), and $155\%$ larger in Thermal Generation (TG) rate; however, the radio-toxicity of the spent fuel was higher than that of $UO_2$ fuel, making it more environmentally unfriendly due to its high burnup rate.

POINTWISE CROSS-SECTION-BASED ON-THE-FLY RESONANCE INTERFERENCE TREATMENT WITH INTERMEDIATE RESONANCE APPROXIMATION

  • BACHA, MEER;JOO, HAN GYU
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.791-803
    • /
    • 2015
  • The effective cross sections (XSs) in the direct whole core calculation code nTRACER are evaluated by the equivalence theory-based resonance-integral-table method using the WIMS-based library as an alternative to the subgroup method. The background XSs, as well as the Dancoff correction factors, were evaluated by the enhanced neutron-current method. A method, with pointwise microscopic XSs on a union-lethargy grid, was used for the generation of resonance-interference factors (RIFs) for mixed resonant absorbers. This method was modified by the intermediate-resonance approximation by replacing the potential XSs for the non-absorbing moderator nuclides with the background XSs and neglecting the resonance-elastic scattering. The resonance-escape probability was implemented to incorporate the energy self-shielding effect in the spectrum. The XSs were improved using the proposed method as compared to the narrow resonance infinite massbased method. The RIFs were improved by 1% in $^{235}U$, 7% in $^{239}Pu$, and >2% in $^{240}Pu$. To account for thermal feedback, a new feature was incorporated with the interpolation of pre-generated RIFs at the multigroup level and the results compared with the conventional resonance-interference model. This method provided adequate results in terms of XSs and k-eff. The results were verified first by the comparison of RIFs with the exact RIFs, and then comparing the XSs with the McCARD calculations for the homogeneous configurations, with burned fuel containing a mixture of resonant nuclides at different burnups and temperatures. The RIFs and XSs for the mixture showed good agreement, which verified the accuracy of the RIF evaluation using the proposed method. The method was then verified by comparing the XSs for the virtual environment for reactor applicationbenchmark pin-cell problem, as well as the heterogeneous pin cell containing burned fuel with McCARD. The method works well for homogeneous, as well as heterogeneous configurations.

Analysis of Performance and Energy Saving of a SOFC-Based Hybrid Desiccant Cooling System (건물용 연료전지 기반 하이브리드 제습냉방시스템 성능 및 에너지 절감 분석)

  • IN, JUNGHYUN;LEE, YULHO;KANG, SANGGYU;PARK, SUNGJIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.136-146
    • /
    • 2019
  • A solid oxide fuel cell (SOFC) based hybrid desiccant cooling system model is developed to study the effect of fuel utilization rate of the SOFC on the reduction of energy consumption and $CO_2$ emission. The SOFC-based hybrid desiccant cooling system consists of an SOFC system and a Hybrid desiccant cooling system (HDCS). The SOFC system includes a stack and balance of plant (BOP), and HDCS. The HDCS consists of desiccant rotor, indirect evaporative cooler, electric heat pump (EHP), and heat exchangers. In this study, using energy load data of a commercial office building and SOFC-based HDCS model, the amount of ton of oil equivalent (TOE) and ton of $CO_2$ ($tCO_2$) are calculated and compared with the TOE and $tCO_2$ generation of the EHP using grid electricity.

Performance Improvement in Single-Phase Electric Spring Control

  • Wang, Qingsong;Zuo, Wujian;Cheng, Ming;Deng, Fujin;Buja, Giuseppe
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.784-793
    • /
    • 2019
  • Two objectives can be pursued simultaneously with the ${\delta}$ control of a single-phase electric spring (ES). These objectives are the stabilization of the voltage across the critical load (CL) of a power system, and the achievement of a specific functionality similar to the pure compensation of reactive power or the correction of the power factor. However, existing control systems implementing the ${\delta}$ control do not cope with non-ideal operating conditions, such as line voltage distortions, and exhibit a somewhat sluggish regulation of the CL voltage. In an effort to improve both the steady-state and transient performances of an ES power system, this paper proposes implementing the ${\delta}$ control by means of a control system built up on the repetitive control and assisted by state feedback with pole assignment. This paper starts by analyzing the dynamics of an ES power system in terms of its poles and zeros. After that, a reduced second-order model of the dynamics is formulated to avoid a notch filter in the pole assignment. A repetitive control for an ES power system is then designed to meet the two above mentioned objectives. Experimental tests carried out on a laboratory setup demonstrate the effectiveness of the proposed control system in significantly improving the ES power system performance, while reaching the two objectives. In particular, the tests outline the large mitigation of harmonics in the CL voltage under line voltage distortions and its fast stabilization action.

Comparison of Ammonia Mass Flow Rate between Two Ammonia Injection Positions in DeNOx system of a Horizontal HRSG (수평형 HRSG의 탈질설비에서 암모니아 분사위치 변동에 따른 암모니아 유량비교)

  • Park, Jae-Hyun;Yoo, Hoseon
    • Plant Journal
    • /
    • v.14 no.4
    • /
    • pp.48-54
    • /
    • 2018
  • As the emission limits for NOx in power generation facilities were strengthened, HRSGs installed in the 1990s became necessary to install additional DeNOx system. However, since there is no space in the HRSG for installing the entire the catalyst and ammonia injection grid, as an alternative, the catalyst was installed inside of the HRSG and the ammonia injection device was installed in the exhaust duct of the gas turbine. Experiments were conducted in horizontal HRSG of Incheon combined cycle power plant. Experimental results show that the ammonia injection method in the gas turbine exhaust duct is 1.2 times higher than the HRSG internal ammonia injection method. However when operating a HRSG for 30 years as its life span, ammonia injection method in the gas turbine exhaust duct is more economical than the cost of new HRSG construction.

  • PDF

Design of Simulated Photovoltaic Power Streetlight for Education using Renewable Energy Utilization and Storage Function (신재생에너지 활용 및 저장기능을 이용한 교육용 모의 태양광발전 가로등 설계)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.137-142
    • /
    • 2021
  • A Photovoltaic power streetlight is a system that uses solar energy to charge a secondary battery and then uses it for night lighting through a lamp, and can be configured as a standalone or grid-connected type by installing an LED streetlight at the load end. The energy generated through the solar cell module can be charged to the secondary battery through the charge/discharge control device, and then the LED street light can be turned on and off by comparing the power generation voltage and the charging voltage according to the monitoring of solar radiation, or by setting a specific time after sunset or sunrise. Based on these contents, this paper designed and manufactured a simulated solar power streetlight for education using new and renewable energy utilization and storage functions. Using these educational equipment, students can 1) understand the flow of energy change using renewable energy including sunlight as electric energy, 2) understand new and renewable energy, and cultivate basic design and manufacturing application power of related products, 3) The use of new and renewable energy through power conversion and strengthening of practical training and analysis through hardware production can be instilled.

Development And Application of Three-phase Inverter Output Wave Generator based on SPWM Control to Verify the Performance of LCL filters (LCL 필터의 성능 검증을 위한 SPWM 제어기반의 3상 인버터 출력 파형 발생 장치 개발 및 적용 연구)

  • Im, Dong-Kyun;Kang, Chang-Kyun;Ha, Won-Jin;Sandagdorj, Chuluunbaatar;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.841-852
    • /
    • 2022
  • In this paper, a 3-phase inverter output waveform generator based on SPWM control was developed to verify the performance of the LCL filter. In order to obtain a test signal for verifying the performance of the filter, first, a DSP-based 3-phase SPWM signal generation algorithm was developed, and then a three-phase voltage source inverter circuit was designed using three half-bridge gate drivers. Next, one LCL filter was experimentally fabricated to verify the effectiveness of the developed SPWM-based 3-phase inverter output waveform generator as a test signal generator, and a DSP-based performance verification system was experimentally constructed. Finally, by comparing the three-phase voltage waveform before and after the LCL filter obtained in the output control experiment with the given time ratio, the effectiveness of the SPWM-based 3-phase inverter output waveform generator was verified.