• Title/Summary/Keyword: Grid fault

Search Result 358, Processing Time 0.028 seconds

Power Swing Detection Using rms Current Measurements

  • Taheri, Behrooz;Razavi, Farzad
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1831-1840
    • /
    • 2018
  • During a power swing, distance relays may mistakenly spread fault throughout the power grid, causing a great deal of damage. In some cases, such mistakes can cause global outages. For this reason, it is critical to make a distinction between power swings and faults in distance relays. In this paper, a new method is proposed based on RMS measurement to differentiate between faults and power swings. The proposed method was tested on two standard grids, demonstrating its capability in detecting a power swing and simultaneous fault with power swing. This method required no specific configurations, and was independent of grid type and zoning type of distance relays. This feature in practice allows the relay to be installed on any grid with any kind of coordination. In protective relays, the calculations applied to the microprocessor is of great importance. Distance relays are constantly calculating the current RMS values for protection purposes. This mitigates the computations in the microprocessor to detect power swings. The proposed method was able to differentiate between a fault and a power swing. Furthermore, it managed to detect faults occurring simultaneously with power swings.

Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid (컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드)

  • Heo, Kyung-Wook;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.

DSP based Real-Time Fault Determination Methodology using Artificial Neural Network in Smart Grid Distribution System (스마트 그리드 배전계통에서 인공신경회로망을 이용한 DSP 기반 실시간 고장 판단 방법론 기초 연구)

  • Jin-Eun Kim;Yu-Rim Lee;Jung-Woo Choi;Byung-Hoon Roh;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.817-826
    • /
    • 2023
  • In this paper, a fault determination methodology based on an artificial neural network was proposed to protect the system from faults on the lines in the smart grid distribution system. In the proposed methodology, first, it was designed to determine whether there is a low impedance line fault (LIF) based on the magnitude of the current RMS value, and if it is determined to be a normal current, it was designed to determine whether a high impedance ground fault (HIF) is present using Normal/HIF classifier based on artificial neural network. Among repetitive DSP module-based algorithm verification tests, the normal/HIF classifier recognized the current waveform as normal and did not show reclosing operation for the cases of normal state current waveform simulation test where the RMS value was smaller than the minimum operating current value. On the other hand, for the cases of LIF where RMS value is greater than the minimum operating current value, the validity of the proposed methodology could be confirmed by immediately recognizing it as a fault state and showing reclosing operation according to the prescribed procedure.

Static Equivalent Model of Inverter-based Distributed Energy Resource for Fault Analysis of Power Distribution Grid

  • Kim, Dong-Eok;Cho, Namhun;Yang, Seung-Kwon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.569-575
    • /
    • 2016
  • In this paper, we propose a method to develop a static equivalent model of an inverter-based distributed energy resource (DER), where the model is used for a steady-state fault analysis of a power grid. First, we introduce the characteristics of an inverter-based DER as well as its general configuration. Then, we derive the equivalent model of the DER on the basis of the characteristics. Last, the performance of the proposed method is proven by the results of computer simulations.

New Three-Phase Static Transfer Switch using AC SSCB (AC SSCB를 이용한 새로운 3상 Static Transfer Switch)

  • Song, Seung-Min;Kim, Jin-Young;Kim, In-Dong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.626-634
    • /
    • 2018
  • These days, widespread use of sensitive loads and distributed generators makes static transfer switch (STS) an essential component in power circuits to achieve a good power quality for AC Grids. In case of a short-circuit fault, previous STS cannot break the fault current. However, the proposed STS has the capability of breaking it quickly as a circuit breaker. Also if there are power quality problems such as Sag/Swell, the proposed STS can quickly transfers the load to the good quality source. Furthermore it is proved that the transfer time of the proposed STS is within one half of period of 3-phase source frequency regardless of the type of load. It is anticipated that the proposed STS may be utilized to realize many stable and reliable AC grid systems.

Modified Differential Protection for Transformers in Wind Farms

  • George, Sujo P.;Ashok, S
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.78-88
    • /
    • 2018
  • The liberalization of electricity market and environmental concerns are the major driving forces for the development of Distributed Generation (DG). The mode of grid-connected wind power generation is becoming popular and has matured as a reliable DG technology. The voltage generated by the wind generator is stepped up to the higher voltage by the transformers before connecting to the grid. Operating algorithm of the differential relays for transformer protection used in the wind farms need to be modified to take care of the dynamic nature of fault current caused by the intermittent nature of the wind power. An algorithm for the differential relay is proposed in which dual slope characteristics are adjusted with varying fault level situation according to the wind generator in service as well as with the wind speed. A case study conducted for a typical wind farm shows that the proposed method avoids mal-operation of the differential relay in varying wind power conditions.

Discrimination of the Faulted Feeder in Grid with Distributed Generations Considering the Characteristics of Protection Devices (보호기기 특성을 고려한 분산전원 연계 계통의 사고 배전선 판별 알고리즘)

  • Kim, S.G.;Kim, K.H.;Jang, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11b
    • /
    • pp.243-245
    • /
    • 2004
  • This paper proposes the discrimination method for the fault location, whether it is within the line where the distributed generation(DG) is integrated or out of the line (but sharing the same bus of the substation). In general, DG has to be disconnected from the grid when the fault occurs on the interconnected distribution feeder as soon as possible. However, the faults occured on the neighboring feeder would mistakenly cause the disconnection of the DG. For reliable operation of DG, DG should be sustained at the fault occurred on neighboring distribution feeders. The proposed identification method utilizes the impedance monitored from the DG and examines the coordination of overcurrent relay of the distribution system. This paper describes how the proposed method to identify the faulted feeder and how the method can be utilized.

  • PDF

Fault Detection Algorithm for an UPS Operation of Power Station (차세대 파워스테이션의 UPS 동작 검출 알고리즘)

  • Jung, Doo-Yong;Park, Kun-Wook;Lee, Su-Won;Seo, Kwang-Duk;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 2010.11a
    • /
    • pp.230-231
    • /
    • 2010
  • In this paper, a fault detection algorithm for an UPS operation of power station is proposed. By adapting the algorithm, a grid-connected power station performs a UPS operation when faults such as sag, swell are occurred. Through a computer simulation, grid faults are simulated and the proposed fault detection algorithm using d, q axis observation method is verified.

  • PDF

A Study on the Characteristics of Voltage Distribution of Stacked YBCO Coated Conductors in Series Connection

  • Chu, Sung-Yul;Hwang, Young-Jin;Kim, Young-Jae;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.25-28
    • /
    • 2009
  • In order to apply superconducting electric machineries such as a Superconducting Fault Current Limiter (SFCL) to the power grid, the single module should be connected in series to have reasonable size. Superconducting tapes in the module also should be stacked to satisfy requirements such as large operation current of the power grid. This is because a single superconducting tape has restricted applicable current capacity. Moreover especially in SFCL at the fault, there should be equal voltage distribution in series-connected SFCL modules. In this paper, we investigated the voltage distribution in fault current of series-connected YBCO coated conductors (CC). Depending on characteristics of the CC samples such as critical current, even voltage distribution could be achieved or not. In addition, the effect of stacked CC on the change of voltage distribution comparing to non-stack cases in series connection was confirmed by experiments. As the CC stacked, voltage difference could be reduced.

Voltage Recovery Capability of Offshore Wind Farm Connected to a Weak Grid via a VSC-HVDC (VSC-HVDC를 통한 약한 계통에 연계된 해상풍력발전시스템의 전압회복능력)

  • Phan, Dinh-Chung;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.702-703
    • /
    • 2011
  • Large offshore wind farms using high voltage direct current transmission system (HVDC) have been considered and exploited in many countries in the world. The maintenance of the stable operation of wind farm and interconnected system is an important issue, especially in the case of fault. To ensure the stable operation after fault clearance, the PCC voltage must be restored as soon as possible and meet the grid code requirement. This paper will evaluate the PCC voltage recovery ability of a large offshore wind farm as it is connected to a weak grid via a VSC-HVDC.

  • PDF