• 제목/요약/키워드: Grid current harmonics

검색결과 87건 처리시간 0.028초

Influence Analysis of Power Grid Harmonics on Synchronous Hydro Generators

  • Qiu, Hongbo;Fan, Xiaobin;Feng, Jianqin;Yang, Cunxiang
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1577-1584
    • /
    • 2018
  • The content of harmonic current increases with an increase in the number of power electronic devices in power grid. When a generator is directly connected to the power grid through a step-up transformer, the influence of the harmonic currents on the generator is inevitable. To study the influences of harmonics on generators, a 24-MW bulb tubular turbine generator is taken as an example in this paper. A 2-D transient electromagnetic field model is established. Through a comparative analysis of the data of experiments and simulations, the correctness of the model is verified. The values of the air gap magnetic density, torque and losses of the generator under various conditions are calculated using the finite element method. Taking the rated condition as a reference, the influence of the harmonic currents on the magnetic flux density is analyzed. It is confirmed that the time harmonic is a key factor affecting the generator performance. At the same time, the effects of harmonic currents on the torque ripple, average torque and eddy current loss of the generator are studied, and the mechanism of the variation of the eddy current loss is also discussed.

Stability Improvement of Distributed Power Generation Systems with an LCL-Filter Using Gain Scheduling Based on Grid Impedance Estimations

  • Choi, Dae-Keun;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.599-605
    • /
    • 2011
  • This paper proposes a gain scheduling method that improves the stability of grid-connected systems employing an LCL-filter. The method adjusts the current controller gain through an estimation of the grid impedance in order to reduce the resonance that occurs when using an LCL-filter to reduce switching harmonics. An LCL-filter typically has a frequency spectrum with a resonance peak. A change of the grid-impedance results in a change to the resonant frequency. Therefore an LCL-filter needs a damping method that is applicable when changing the grid impedance for stable system control. The proposed method instantaneously estimates the grid impedance and observes the resonant frequency at the same time. Consequently, the proposed method adjusts the current controller gain using a gain scheduling method in order to guarantee current controller stability when a change in the resonant frequency occurs. The effectiveness of the proposed method has been verified by simulations and experimental results.

Design Methodology of Passive Damped LCL Filter Using Current Controller for Grid-Connected Three-Phase Voltage-Source Inverters

  • Lee, Jun-Young;Cho, Young-Pyo;Kim, Ho-Sung;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1178-1189
    • /
    • 2018
  • In grid-connected voltage-source inverters (VSIs), when compared with a simple inductive L filter, the LCL filter has a better performance in attenuating the high frequency harmonics caused by the pulse-width modulation of power switches. However, the resonance peaks generated by the filter inductors and capacitors can make a system unstable. In terms of simplicity and filter design cost, a passive damping method is generally preferred. However, its high power loss and degradation in high frequency harmonic attenuation are significant demerits. In this paper, a mathematical design solution for a passive LCL filter to derive filter parameters suppressing the high frequency current harmonics to 0.3% is proposed. The minimum filter inductance can be obtained to reduce the size of the filter. Furthermore, a minimum damping resistance design considering a current controller is analyzed for a stable closed-loop system. The proposed design method is verified by experimental results using a 5-kW three-phase prototype inverter.

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.

PSO를 이용한 계통연계형 인버터 전류제어기의 자동조정에 관한 연구 (A Study on Tuning of Current Controller for Grid-connected Inverter Using Particle Swarm Optimization)

  • 안종보;김원곤;황기현;박준호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권11호
    • /
    • pp.671-679
    • /
    • 2004
  • This paper presents the on-line current controller tuning method of grid-connected inverter using PSO(particle swarm optimization) technique for minimizing the harmonic current. Synchronous frame PI current regulator is commonly used in most distributed generation. However, due to the source voltage distortion, specially in weak AC power system, current may contain large harmonic components, which increase THD(total harmonic distortion) and deteriorates power quality. Therefore, some tuning method is necessary to improve response of current controller. This paper used the PSO technique to tune the current regulator and through simulation and experiments, usefulness of the tuning method has been verified. Especially in simulating the tuning process, ASM(average switching model) of inverter is used to shorten execution time.

A Single-Phase Unified Power Quality Conditioner with a Frequency-Adaptive Repetitive Controller

  • Phan, Dang-Minh;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.790-799
    • /
    • 2018
  • This paper proposes a single-phase unified power quality conditioner (S-UPQC) for maintaining power quality issues in a microgrid. The S-UPQC can compensate the voltage and current harmonics, voltage sag, and swell as a dynamic voltage restorer (DVR), regardless of variations in the grid frequency. Odd harmonics are treated as even-order harmonics in a rotating frame to implement the harmonic compensators with only one repetitive controller (RC) without any harmonic extractor. The dynamic performance is improved and the delay time is reduced in the RC. The S-UPQC control scheme is designed to maintain accurate and stable operation under deviations of the grid frequency by using the Lagrange interpolation-based finite-impulse-response (LIFIR) filter approximation method. The proposed control schemes were validated through a simulation and experiment.

엑티브 필터 기능을 갖는 계통연계형 단상 태양광 발전시스템의 제안 (Proposal of the Grid-connected Single Phase PCS including the Function of Active Filter)

  • 장성재;서효룡;김경훈;박상수;박민원;유인근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1077-1078
    • /
    • 2008
  • The growing number of nonlinear loads such as static power converters has posed a problem on the quality of electric power supply. The active filters (AF) have been rapidly expanding with the advancement of power electronics technology. The purpose of the active filters is to compensate current harmonics and/or current imbalance. The authors have studied and introduced the PV-AF system; the PV power system, which is used widely as a dispersed source, including the function of active filter to compensate the harmonics caused by nonlinear loads. The PV-AF system has merits not only to compensate harmonics caused by nonlinear loads but also to increase the utilization of PCS. This paper describes the grid-connected single phase PV-AF system and the PSCAD/EMTDC simulation results.

  • PDF

계통 연계형 컨버터의 능동 댐핑을 위한 공진주파수 추정 기능에 관한 연구 (A Study on the Estimation of the Resonance Frequency for an Active Damping Technique of Grid Connected Converters)

  • 박일우;이우철
    • 조명전기설비학회논문지
    • /
    • 제27권1호
    • /
    • pp.76-84
    • /
    • 2013
  • The renewable energy sources is raising for use of grid connected systems, for which higher power quality requirements are being issued. A grid connected converter requires a LC-filter stage, this one is lightly damped for efficiency constraints. Hence, it is subject to resonance if excited by the converter current harmonics or pre-exciting grid voltage harmonics. In this paper, an active damping technique employing notch filter for damping of the resonance frequency is introduced. This technique doesn't need to additional sensors. In addition, it is simple to apply for various systems. Monitoring of the resonance frequency ensures the stable operation of the proper connection and disconnection of the grid. This paper proposes the estimating method of a resonant frequency to determine the cut-off frequency of the notch filter. This method is validated by both simulation and experimental results.

단상 계통연계 태양광 인버터용 L-C-L 필터 설계 및 분석 (Study and Design of L-C-L Filter for Single-Phase Grid-Connected PV Inverter)

  • 차한주;부우충기엔
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 에너지변화시스템부문
    • /
    • pp.228-230
    • /
    • 2009
  • Nowadays, the LCL-filter type becomes an attractive grid interfacing for grid-connected Voltage Source Inverter (VSI). LCL-filter can render the current harmonics attenuation around the switching frequency by using smaller inductance than L-filter. This paper presents a study about the LCL-filter design for single-phase grid-connected inverter in Photovoltaic (PV) system. According to the expected current ripple, the inductances of the filter can be determined. Based on the absorbed reactive power on capacitor, the capacitance can be calculated. Due to the theoretical analysis, a LCL-filter based single phase grid connected inverter control system are simulated. The studied simulation results are given to validate the theoretical analysis.

  • PDF

Output Voltage Regulation for Harmonic Compensation under Islanded Mode of Microgrid

  • Lim, Kyungbae;Choi, Jaeho
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.464-475
    • /
    • 2017
  • This study examines a P+multi resonant-based voltage control for voltage harmonics compensation under the islanded mode of a microgrid. In islanded mode, the inverter is defined as a voltage source to supply the full local load demand without the connection to the grid. On the other hand, the output voltage waveform is distorted by the negative and zero sequence components and current harmonics due to the unbalanced and nonlinear loads. In this paper, the P+multi resonant controller is used to compensate for the voltage harmonics. The gain tuning method is assessed by the tendency analysis of the controller as the variation of gain. In addition, this study analyzes the slight voltage magnitude drop due to the practical form of the P+multi resonant and proposes a counter method to solve this problem by adding the PI-based voltage restoration method. The proposed P+multi resonant controller to compensate for the voltage harmonics is verified through the PSIM simulation and experimental results.