• Title/Summary/Keyword: Grid converter

Search Result 490, Processing Time 0.029 seconds

Study on a Noval Simulation Method of Wind Power Generation System Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 풍력발전시스템의 새로운 시뮬레이션 방법에 관한 연구)

  • 한상근;박민원;유인근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.6
    • /
    • pp.307-315
    • /
    • 2003
  • This paper proposes a novel simulation method of WPGS (Wind Power Generation System). The rotation speed control method of turbine under variable wind speed using the pitch control is proposed. Moreover, when wind speed exceeds the cut-out wind speed, the turbine will be stopped by controlling pitch angle to 90$^{\circ}$, otherwise it will be controlled to steady-state operation. For the purpose of effective simulation, the SWRW (Simulation method for WPGS using Real Weather condition) is used for the utility interactive WPGS simulation in this paper, in which those of three topics for the WPGS simulation: user-friendly method, applicability to grid-connection and the utilization of the real weather conditions, are satisfied. It is impossible to consider the real weather conditions in the WPGS simulation using the EMTP type of simulators and PSPICE, etc. External parameter of the real weather conditions is necessary to ensure the simulation accuracy. The simulation of the WPGS using the real weather conditions including components modeling of wind turbine system is achieved by introducing the interface method of a non-linear external parameter and FORTRAN using PSCAD/EMTDC in this paper. The simulation of long-term, short-term, over cut-out and under cut-out wind speeds will be peformed by the proposed simulation method effectively. The efficiency of wind power generator, power converter and flow of energy are analyzed by wind speed of the long-term simulation. The generator output and current supplied into utility can be obtained by the short-term simulation. Finally, transient-state of the WPGS can be analyzed by the simulation results of over cut-out and under cut-out wind speeds, respectively.

Photo-Sensorless Solar Tracking System based on Modular Structure and IoT Technology (모듈화 구조와 IoT 기반의 광센서리스 태양광 추적 시스템)

  • Kim, Dae-Won;Kim, Jeong-Tae;Chung, Gyo-Bum
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.392-402
    • /
    • 2020
  • This paper proposes a solar tracking system without photo-sensors. The system can be classified into four modules: Solar Tracking, MPPT, ESS, and Real-Time Monitoring. Nine solar panels, as a basic unit, are adopted with grid structures of different heights to reduce wind influence and to enable solar tracking without photo-sensors. The low-cost MCU implements MPPT method which generates PWM switching signal for boost converter. The unit of ESS consists of three-series and four-parallel lithium-ion batteries in order to enable monitoring for abnormalities in temperature and electrical characteristics of battery. Four MCUs used in the system consists of two AVR Atmega128, and two Raspberry PI, and they exchanges operation informations. Experimental results of the proposed system show the solar tracking performance, the possibility of on-site and remote monitoring and the convenience of maintenance based on IoT technology.

A Calculation Method for the Nonlinear Crowbar Circuit of DFIG Wind Generation based on Frequency Domain Analysis

  • Luo, Hao;Lin, Mingyao;Cao, Yang;Guo, Wei;Hao, Li;Wang, Peng
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1884-1893
    • /
    • 2016
  • The ride-through control of a doubly-fed induction generator (DFIG) for the voltage sags on wind farms utilizing crowbar circuits by which the rotor side converter (RSC) is disabled has being reported in many literatures. An analysis and calculation of the transient current when the RSC is switched off are of significance for carrying out the low voltage ride through (LVRT) of a DFIG. The mathematical derivation is highlighted in this paper. The zero-state and zero-input responses of the transient current in the frequency domain through a Laplace transformation are investigated, and the transient components in the time domain are achieved. With the characteristics worked out from the linear resolving without modeling simplification, the selection of the resistance in the linear crowbar circuit and the value conversion from a linear circuit to a nonlinear one is proposed to setup the attenuation rate. In terms of grid code requirements, the theoretical analysis for the time constant of the transient components attenuation insures the controllability when the excitation of the RSC is resumed and it guarantees the reserved time for the response of the reactive power compensation. Simulations are executed in MATLAB/SIMPOWER and experiments are carried out to validate the theoretical analysis. They indicate that the calculation method is effective for selection of the resistance in a crowbar circuit for LVRT operations.

A Study on the Development of Soil Moisture Measuring Unit (인공토조용(人工土槽用) 토양함수율(土壤含水率) 측정기(測程器) 개발(開發)에 관(關)한 연구(硏究))

  • Park, J.G.;Lee, S.K.;Rhee, J.Y.
    • Journal of Biosystems Engineering
    • /
    • v.11 no.2
    • /
    • pp.14-22
    • /
    • 1986
  • This study was carried out to find a method which can be used to measure the soil moisture content of the soil bin exactly and quickly. And gypsum block is used as an instrument in measuring soil moisture content in the field of green house farming, etc.. However the characteristics of gypsum block, or the guide line of making gypsum block is not well introduced in Korea. So the information about gypsum block such as the density of gypsum, type of electrode, dimension of electrode, distance between electrodes, density of surrounding soil were included in this study and their effects on the relationship between soil moisture content and electrical resistance were investigated. The results of this study are as follows; 1. The grid type electrode was quicker in accessing the equilibrium condition and showed more sensitive response to the change of soil moisture content than the plate type electrode. 2. The longer the distance between the electrodes, the larger the electrical resistance, and the distance of 3 to 5 mm was recommended. 3. The larger the width of the electrode, the smaller the electrical resistance. However, there was no significance between the levels designed in this study. Considering the size of the gypsum block itself, the adaptible range of width may be 4 to 8 mm. 4. The higher the density of gypsum, the smaller the electrical resistance. And the block of lower density was broken down in the soil of higy moisture content. The optimum ratio of gypsum to water was 7:5. 5. The measuring system used in this study allowed simultaneous, multi-data acquisition. So this system using A/D converter can be applied to the measurement of soil moisture content of soil bin.

  • PDF

Improved Load Sharing Rate in Paralleled Operated Lead Acid Batteries (납 축전지의 병렬운전시 부하분담률 개선)

  • 반한식;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy directly without a mechanical process. Unit cells are connected in series to obtain the required voltage, while being connected in parallel to organize capacity for load current and to decrease the internal resistance for corresponding the sudden shift of the load current. Because the voltage droop down in one set of battery is faster than in tow one, it amy result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However, when the system being driven in parallel, a circular-current can be generated. The changing current differs in each set of battery because the system including batteries, rectifiers and loads is connected in parallel and it makes the charge voltage constant. It is shown that, as a result the new batteries are heated by over-charge and over-discharge, and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper, we can detect the unbalance current using the micro-processor and achieve the balance current by adjusting resistance of each set. The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

Optimized Topology and LCL Filter Design of Utility-interactive PCS for MCFC Generation (MCFC 발전을 위한 계통연계 PCS의 최적 토폴로지 및 LCL 필터 설계)

  • Kim, Hyung-Jin;Park, Jun-Sung;Kim, Young-Woo;Choi, Se-Wan;Kim, Tae-Hee;Lee, Gi-Pung;Lee, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.405-414
    • /
    • 2011
  • Recently, the development of several hundreds of kW scale PCS for fuel cell generation is required as commercialization process of distributed generation systems using high temperature fuel cells such as MCFC begins. This paper proposes and optimized topology suitable for MCFC fuel cell generation system and LCL filter design method considering voltage quality of local loads such as MBOP. An interleaving technique is applied to step-up DC-DC converter, optimized number of phases is determined considering efficiency and volume. Also, a LCL filter design method is proposed considering quality of current injected to the grid as well as that of voltage across the local load. The proposed PCS system is validated through reduced 1kW prototype.

Grid Peak Power Limiting / Compensation Power Circuit for Power Unit under Dynamic Load Profile Conditions (Dynamic Load Profile 조건의 전원 장치에 있어서 계통 Peak Power 제한/보상 전력 회로)

  • Jeong, Hee-Seong;Park, Do-Il;Lee, Yong-Hwi;Lee, Chang-Hyeon;Rho, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.376-383
    • /
    • 2022
  • The improved performance of computer parts, such as graphic card, CPU, and main board, has led to the need for power supplies with a high power output. The dynamic load profile rapidly changes the usage of power consumption depending on load operations, such as PC power and air conditioner. Under dynamic load profile conditions, power consumption can be classified into maximum, normal, and standby power. Several problems arise in the case of maximum power. Peak power is generated at the system power source in the maximum-power situation. Frequent generation of peak power can cause high-frequency problems and reduce the life of high-pressure parts (especially high-pressure capacitors). For example, when a plurality of PCs are used, system overload occurs due to peak power generation and causes problems, such as power failure and increase in electricity bills due to exceeded contract power. To solve this problem, a system peak power limit/compensation power circuit is proposed for a power supply under dynamic load profile conditions. The proposed circuit detects the system current to determine the power situation of the load. When the system current is higher than the set level, the circuit recognizes that the system current generates peak power and compensates for the load power through a converter using a super capacitor as the power source. Thus, the peak power of loads with a dynamic load profile is limited and compensated for, and problems, such as high-frequency issues, are solved. In addition, the life of high-pressure parts is increased.

Transient Stability Analysis of Vessel Power System Using Alternative Marine Power (육상전원공급장치(AMP) 이용한 선내 전원 공급 시 계통 안정도 분석)

  • Seung-pyo Kang;Jang-mok Kim;Hyun-jun Cho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.2
    • /
    • pp.215-222
    • /
    • 2023
  • Alternative marine power (AMP) is continuously used in ports and on docks because of regulations on global ship emission reduction. In Korea, the use of AMP is also mandatory under the Special Act on Port Air Quality Improvement, and efforts are under way in connection with various eco-friendly ships, such as electric-propulsion ships. In this study, AC load flow analysis was performed by modeling the situation in which onboard power is supplied through AMP. This analysis made it possible to study the electrical parameters and losses when power was supplied to the ship. In addition, through a transient stability analysis, the high-speed generation transfer limit value for uninterruptible conversion through onboard generators in the event of a system accident was derived. The results obtained when it was applied are presented

Development of Planar Active Electronically Scanned Array(AESA) Radar Prototype for Airborne Fighter (항공기용 평면형 능동 전자주사식 위상 배열(AESA) 레이더 프로토 타입 개발)

  • Chong, Min-Kil;Kim, Dong-Yoon;Kim, Sang-Keun;Chon, Sang-Mi;Na, Hyung-Gi
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1380-1393
    • /
    • 2010
  • This paper presents a design, fabrication and the test results of planar active electronically scanned array(AESA) radar prototype for airborne fighter applications using transmit/receive(T/R) module hybrid technology. LIG Nex1 developed a AESA radar prototype to obtain key technologies for airborne fighter's radar. The AESA radar prototype consists of a radiating array, T/R modules, a RF manifold, distributed power supplies, beam controllers, compact receivers with ADC(Analog-to-Digital Converter), a liquid-cooling unit, and an appropriate structure. The AESA antenna has a 590 mm-diameter, active-element area capable of containing 536 T/R modules. Each module is located to provide a triangle grid with $14.7\;mm{\times}19.5\;mm$ spacing among T/R modules. The array dissipates 1,554 watts, with a DC input of 2,310 watts when operated at the maximum transmit duty factor. The AESA radar prototype was tested on near-field chamber and the results become equal in expected beam pattern, providing the accurate and flexible control of antenna beam steering and beam shaping.