• Title/Summary/Keyword: Grid computing environment

Search Result 173, Processing Time 0.021 seconds

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Resource Management Scheme in Proxy-Based Mobile Grid (프록시기반 모바일 그리드에서 자원관리 기법)

  • Cho, InSeock;Lee, DaeWon;Lee, HwaMin;Gil, JoonMin;Yu, HeonChang
    • The Journal of Korean Association of Computer Education
    • /
    • v.11 no.5
    • /
    • pp.67-76
    • /
    • 2008
  • Grid computing has a large scale virtual computing environment that enables a collaborative processing through sharing resources of geographically distributed organizations. In recent year, the development of wireless networks and mobile devices enables mobile devices to consider as a resource of the grids. However, there are some problems such as low performance of processors, small capacity of storages, limited capacity of battery, and low bandwidth. In this paper, to overcome these limitations occurred in mobile grid environments, we proposed a proxy-based mobile grid system. Our proposed system enables mobile devices to play roles as a resource consumer and a resource provider and to collaborate with wired grids through a mobile router. Also, we propose an adaptive job scheduling scheme to cope with context changes of mobile devices and compare our scheduling scheme with other scheduling schemes using a simulation tool, SimGrid, to verify the validity of our job scheduling scheme.

  • PDF

Grid-Based Civil-Engineering Remote Experiment System (그리드 기반의 토목공학 원격실험 시스템)

  • Lee, Jang-Ho;Jeong, Tai-Kyeong
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.125-132
    • /
    • 2007
  • Recently, in the engineering area, there is an increasing need for researchers at a distance to share the result of the experiment, without having to visit the experiment facilities. Especially in the civil engineering, researchers feel the need for participating in a experiment conducted at a distant location. In addition, it is suggested that high-cost facilities should be used by remote researchers thereby increasing the utilization rate. This paper proposes a remote experiment environment in civil engineering that are being developed in a project called Korea Construction Engineering Development(KOCED), which connects major civil engineering experiment facilities using grid technology, allows researchers to participate in a remote experiment, and has the experiment results shared by remote researchers automatically. Then, based on the suggested environment, we designed a hybrid test facility that involves two physical experiment facility sites and one numerical simulation site that are geographically apart. Then, we implemented its prototype and ran some tests, which showed a possibility of grid-based civil engineering experiment.

The Design and Implementation of an Available Bandwidth Measurement Scheme in the K*Grid System

  • Hahm, Seong-Il;Cho, Seong-Ho;Choi, Han;Kim, Chong-Kwon;Lee, Pill-Woo
    • Journal of Information Processing Systems
    • /
    • v.2 no.2
    • /
    • pp.101-106
    • /
    • 2006
  • Grid computing is an emerging technology that enables global resource sharing. In Korea, the $K^*$Grid provides an extremely powerful research environment to both industries and academia. As part of the $K^*$Grid project, we have constructed, together with the Korea Institute of Science and Technology Information and a number of domestic universities, a supercomputer Grid test bed which connects several types of supercomputers based on the globus toolkit. To achieve efficient networking in this Grid testbed, we propose a novel method of available bandwidth measurement, called Decoupled Capacity measurement with Initial Gap (DCIG), using packet trains. DCIG can improve the network efficiency by selecting the best path among several candidates. Simulation results show that DCIG outperforms previous work in terms of accuracy and the required measurement time. We also define a new XML schema for DCIG request/response based on the schema defined by the Global Grid Forum (GGF) Network Measurement Working Group (NM-WG).

Scalable Resource Sharing using Group Similarity Function in Grid System (그리드 시스템에서 그룹유사함수를 이용한 확장성 있는 자원공유)

  • Mateo, Romeo Mark A.;Lee, Jae-Wan;Lee, Mal-Rey
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.73-83
    • /
    • 2010
  • The scalability of a grid system should be efficiently designed to handle the increasing number of grid users. This paper presents a scalable resource sharing mechanism among virtual organizations (VO) in grid environment by the scalable virtual organizations (SVO). The proposed grid architecture is composed of standard services of a grid system to manage the SVO. We propose a group similarity function which is used to determine similarities among VOs to select the VOs to merge. We compared other similarity functions to the GSF and determined the throughput performance of the SVO using simulation for grid system.

Essential Computational Tools for High-Fidelity Aerodynamic Simulation and Design (고 정밀 항공우주 유동해석 및 설계를 위한 공력계산 툴)

  • Kim, Chong-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.33-36
    • /
    • 2006
  • As the computing environment is rapidly improved, the interests of CFD are gradually focused on large-scale computation over complex geometry. Keeping pace with the trend, essential computational tools to obtain solutions of complex aerospace flow analysis and design problems are examined. An accurate and efficient flow analysis and design codes for large-scale aerospace problem are presented in this work. With regard to original numerical schemes for flow analysis, high-fidelity flux schemes such as RoeM, AUSMPW+ and higher order interpolation schemes such as MLP (Multi-dimensional Limiting Process) are presented. Concerning the grid representation method, a general-purpose basis code which can handle multi-block system and overset grid system simultaneously is constructed. In respect to design optimization, the importance of turbulent sensitivity is investigated. And design tools to predict highly turbulent flows and its sensitivity accurately by fully differentiating turbulent transport equations are presented. Especially, a new sensitivity analysis treatment and geometric representation method to resolve the basic flow characteristics are presented. Exploiting these tools, the capability of the proposed approach to handle complex aerospace simulation and design problems is tested by computing several flow analysis and design problems.

  • PDF

Design and Implementation Web-based Grid-computing Framework (웹기반 그리드컴퓨팅 프레임워크의 설계 및 구현)

  • 강경우;강윤희;김도현;조광문;궁상환
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.461-465
    • /
    • 2003
  • Grid-computing on networked computers is increasingly applied to the variety of large-scale computation problem. Several software systems are developed for providing the application programmers with computers available. However, these systems are not web-based systems, lacks a collaborative environment or do not supply the real-time visualization facility. Web technology is become the general technology on the development of network application, in particular, because the interface can be made platform independent. In this paper, we propose the web-based framework for executing the parallel SPMD application written MPI. Also, a web-based collaborative environment is development with a real-time visualization technology.

  • PDF

A Study of The Secure Mobile Healthcare System for Medical Grid Devices (메디컬 그리드 장치를 위한 안전한 모바일 헬스케어 시스템에 관한 연구)

  • Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.6
    • /
    • pp.89-95
    • /
    • 2008
  • The introduction of wireless information technology gives rise to new mobile services in all kinds of areas of out daily life. Mobile healthcare system is a production of composite ICT (Information and Communication Technology) which focused on signal sensing, processing, and communication in wireless environment. The mobile and wireless revolution promises not only expanded access to patient health information, but also improved patient care. In this paper, we describe a surrogate host based mobile healthcare information system which utilized Grid computing for real-time ECG signal processing. The surrogate host provides seamless interface between mobile device and Medical Grid portal. The security extension of GSI (Grid Security Infrastructure) allows mobile users to access Grid portal in a secure and convenient manner. The presented system architecture can be used as a secure enterprise mobile healthcare system for hospital physicians.

  • PDF

Grid-based Biological Data Mining using Dynamic Load Balancing (동적 로드 밸런싱을 이용한 그리드 기반의 생물학 데이터 마이닝)

  • Ma, Yong-Beom;Kim, Tae-Young;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.81-89
    • /
    • 2010
  • Biological data mining has been noticed as an issue as the volume of biological data is increasing extremely. Grid technology can share and utilize computing data and resources. In this paper, we propose a hybrid system that combines biological data mining with grid technology. Especially, we propose a decision range adjustment algorithm for processing efficiency of biological data mining. We obtain a reliable data mining recognition rate automatically and rapidly through this algorithm. And communication loads and resource allocation are key issues in grid environment because the resources are geographically distributed and interacted with themselves. Therefore, we propose a dynamic load balancing algorithm and apply it to the grid-based biological data mining method. For performance evaluation, we measure average processing time, average communication time, and average resource utilization. Experimental results show that this method provides many advantages in aspects of processing time and cost.