• Title/Summary/Keyword: Grid computing environment

Search Result 173, Processing Time 0.022 seconds

Service Prediction-Based Job Scheduling Model for Computational Grid (계산 그리드를 위한 서비스 예측 기반의 작업 스케쥴링 모델)

  • Jang Sung-Ho;Lee Jong-Sik
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.05a
    • /
    • pp.29-33
    • /
    • 2005
  • Grid computing is widely applicable to various fields of industry including process control and manufacturing, military command and control, transportation management, and so on. In a viewpoint of application area, grid computing can be classified to three aspects that are computational grid, data grid and access grid. This paper focuses on computational grid which handles complex and large-scale computing problems. Computational grid is characterized by system dynamics which handles a variety of processors and jobs on continuous time. To solve problems of system complexity and reliability due to complex system dynamics, computational grid needs scheduling policies that allocate various jobs to proper processors and decide processing orders of allocated jobs. This paper proposes the service prediction-based job scheduling model and present its algorithm that is applicable for computational grid. The service prediction-based job scheduling model can minimize overall system execution time since the model predicts a processing time of each processing component and distributes a job to processing component with minimum processing time. This paper implements the job scheduling model on the DEVSJAVA modeling and simulation environment and simulates with a case study to evaluate its efficiency and reliability Empirical results, which are compared to the conventional scheduling policies such as the random scheduling and the round-robin scheduling, show the usefulness of service prediction-based job scheduling.

  • PDF

Load Balancing for CFD Applicationsin Grid Computing Environment

  • Ko, Soon-Heum;Kim, Chong-Am;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.5 no.1
    • /
    • pp.64-74
    • /
    • 2004
  • The Grid is a communication service that collaborates dispersed highperformance computers so that those can be shared and worked together. It enablesthe analysis of large-scale problem with the reduction of computation time bycollaborating high performance computing resources in dispersed organizations. Thus,the present paper focuses on the efficient flow calculation using the Grid. To increaseparallel efficiency, a simple load balance algorithm for the Grid computing is proposedand applied to various aerodynamic problems.

Supply-Driven Strategies Model for Resource Management in Grid Environment (그리드 환경에서의 효율적인 자원 관리를 위한 공급-조정 전략 모델)

  • Ma Yong-Beom;Lee Jong-Sik;Cho Kyu-Cheol;Kim In-Hee;Jang Sung-Ho;Park Da-Hye
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2005.11a
    • /
    • pp.65-70
    • /
    • 2005
  • Recently, Grid is embossed as a new issue according to the need of cooperation related to distributed resources, data sharing, Interaction and so on. It focuses on sharing of large scale resources, high-performance, applications of new paradigms, which improved more than established distributed computing. Because of the environmental specificity distributed geographically and dynamic, the most important problem in grid environment is to share and to allocate distributed grid resources. This paper proposes supply-driven strategies model that is applicable for resource management in grid environment and presents a optimal resource allocation algorithm based on resource demands. Supply-driven strategies model can offer efficient resource management by transaction allocation based on user demand and provider strategy. This paper implements the supply-driven strategies model on the DEVS modeling and simulation environment and shows the efficiency and excellency of this model by comparing with established models.

  • PDF

Design and Implementation of a Distributed Data Mining Framework (분산된 데이터마이닝을 위한 프레임워크의 설계 및 구현)

  • Kadel, Prakash;Choi, Ho-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06c
    • /
    • pp.336-340
    • /
    • 2007
  • We envisage that grid computing environments allow us to implement distributed data mining services, that is, those applications which analyze large sets of geographically distributed databases and information using the computational power and resources of a grid environment. This paper describes an experimental framework towards such a distributed data mining approach, including design considerations and a prototype implementation. Based on the "Knowledge Grid" architecture suggested by Cannataro et al., we identify four major components - user node, broker node, data node, and computation node - and define their individual roles. For implementing the prototype, we have investigated methods for utilizing distributed resources within a grid computing environment, e.g., communication and coordination among the various resources available.

  • PDF

Grid Management System and Information System for Semantic Grid Middleware

  • Kim, Hyung-Lae;Han, Byong-John;Jeong, In-Yong;Jeong, Chang-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.6
    • /
    • pp.1080-1097
    • /
    • 2010
  • Well organized and easy usable Grid management system is very important for executing various Grid applications and managing Grid computing environment. Moreover, information system which can support Grid management system by providing various Grid environment related information is also one of the most interesting issue in the Grid middleware system area. Effective cooperation between Grid management system and information system can make a novel Grid middleware system. Especially, service oriented architecture based Grid management system is flexible and extensible for providing various type of Grid services. Also, information system based on data mining process which comprises various different kinds of domains such as users, resources and applications can make Grid management system more precise and efficient. In this paper, we propose semantic Grid middleware system which is a combination of Grid management system and semantic information system.

A Dynamic Reconfiguration Method using Application-level Checkpointing in a Grid Computing Environment with Cactus and Globus (Cactus와 Globus에 기반한 그리드 컴퓨팅 환경에서의 응용프로그램 수준의 체크포인팅을 사용한 동적 재구성 기법)

  • Kim Young Gyun;Oh Gil-ho;Cho Kum Won;Na Jeoung-Su
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.6
    • /
    • pp.465-476
    • /
    • 2005
  • In this paper, we propose a new dynamic reconfiguration method using application-level checkpointing in a grid computing environment with Cactus and Globus. The existing dynamic reconfiguration methods have been dependent on a specific hardware and operating system. But the proposed method performs a dynamic reconfiguration without supporting specific hardwares and operating systems and, an application is programmed without considering a dynamic reconfiguration. In the proposed method, the job starts with an initial configuration of Computing resources and the job restarts including new resources dynamically found at run-time. The proposed method determines whether to include the newly found idle sites by considering processor performance and available memory of the sites. Our method writes the intermediate results of the job on the disks using system-independent application-level checkpointing for real-time visualization during the job runs. After reconfiguring idle sites and idle processors newly found, the job resumes using checkpointing files. The proposed dynamic reconfiguration method is proved to be valid by decreasing total execution time In K*Grid.

CFD Analyses on Cactus PSE(Problem Solving Environment) (Cactus PSE의 활용을 통한 전산유체역학 문제 해석)

  • Ko S. H.;Cho K. W.;Na J.;Kim Y. G.;Song Y. D.;Kim C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.47-50
    • /
    • 2005
  • The Grid'[1] means the collaboration of computing and experimental resources in dispersed organizations by high-speed network. It has been paid much attention for an unlimited number of potential resources available and the easiness to build collaborative environments among multiple disciplines. However, the difficulty in establishing the environments and accessing and utilizing the resources has prevented application scientists from conducting Grid computing. Thus, the present study focuses on building PSE(Problem Solving Environment) which assists application researchers to easily access and utilize the Grid. The Cactus toolkit, originally developed by astrophysicists, is used as a base frame for Grid PSE. Some modules are newly developed and modified for CFD(Computational Fluid Dynamics) analysis. Simultaneously, a web portal, Grid-One portal, is built for remote monitoring/control and job migration. Cactus frame through the web portal service has been applied to various CFD problems, demonstrating that the developed PSE is valuable for large-scaled applications on the Grid.

  • PDF

A Point-based Scheduling Algorithm for GRID Environment (그리드 시스템을 위한 포인트 기반 스케줄링 알고리즘)

  • Oh Young-Eun;Kim Jin Suk
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.639-645
    • /
    • 2005
  • GRID environments have been developed in distributed heterogeneous computing infrastructure for advanced science and engineering Therefore efficient scheduling algorithms for allocating user job to resources in the GRID environment are required. Many scheduling algorithms have been proposed, but these algorithms are not suitable for the GRID environment. That is the previous scheduling algorithm does not consider network bandwidth between multiple resources. In this paper, we propose a new scheduling algorithm for Global GRID environment and show that our algorithm has better performance than other scheduling algorithms through extensive simulation.

Mobile Resource Reliability-based Job Scheduling for Mobile Grid

  • Jang, Sung-Ho;Lee, Jong-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.83-104
    • /
    • 2011
  • Mobile grid is a combination of grid computing and mobile computing to build grid systems in a wireless mobile environment. The development of network technology is assisting in realizing mobile grid. Mobile grid based on established grid infrastructures needs effective resource management and reliable job scheduling because mobile grid utilizes not only static grid resources but also dynamic grid resources with mobility. However, mobile devices are considered as unavailable resources in traditional grids. Mobile resources should be integrated into existing grid sites. Therefore, this paper presents a mobile grid middleware interconnecting existing grid infrastructures with mobile resources and a mobile service agent installed on the mobile resources. This paper also proposes a mobile resource reliability-based job scheduling model in order to overcome the unreliability of wireless mobile devices and guarantee stable and reliable job processing. In the proposed job scheduling model, the mobile service agent calculates the mobile resource reliability of each resource by using diverse reliability metrics and predicts it. The mobile grid middleware allocated jobs to mobile resources by predicted mobile resource reliability. We implemented a simulation model that simplifies various functions of the proposed job scheduling model by using the DEVS (Discrete Event System Specification) which is the formalism for modeling and analyzing a general system. We also conducted diverse experiments for performance evaluation. Experimental results demonstrate that the proposed model can assist in improving the performance of mobile grid in comparison with existing job scheduling models.

A Design of Resource Access Control Architecture Driven by Accounting in Grid Computing Environment (그리드 컴퓨팅 환경에서 어카운팅에 의해 구동되는 자원 접근 제어 구조 설계)

  • Hwang, Ho-Jeon;An, Dong-Un;Chung, Seung-Jong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • At present various methods relating resource access control in grid environment are being studied. Most of the access authorization to grid resource is designed fit to the attributes and the role of user. But resource access control is to be made in the respect of business model to activate grid. Therefore this study suggests a model that can operate resource access control driven by grid accounting information. On the base of collection of accounting information about grid job, processing cost is yielded. If the user's available fund is less than processing cost, it gets to control grid job by the resource access control policy. Finally when grid job is completed, user is assigned to pay the charges for using resource of supplier. Then resource provider gets to supply stable resource in grid by participating it voluntarily to use idle resource. This study is esteemed to realize utility computing environment correspondent to economic principle by ensuring resource access policy of organizations which participate in grid.