
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, December 2010 1080
Copyright ⓒ 2010 KSII

This research was supported by the Industry Core Technology Development Project supervised by the KEIT(Korea
Evaluation Institute of Industrial Technology)(KEITK1002153), the ITRC(Information Technology Research
Center) support program supervised by the NIPA(National IT Industry Promotion
Agency)(NIPA-2010-C1090-1001-0008), the Seoul Research and Business Development Program, Smart City
Consortium(10561), Future-based Technology Development Program through the National Research Foundation
of Korea(NRF) funded by the Ministry of Education, Science and Technology(2010-0020-732), and Samsung
Electronics.

DOI: 10.3837/tiis.2010.12.006

Grid Management System and Information
System for Semantic Grid Middleware

Hyung-Lae Kim1, Byong-John Han2, In-Yong Jeong2 and Chang-Sung Jeong2
1School of Visual Information Processing, Korea University

Anamdong 5-ga, Sung-buk gu, Seoul 137-710, Korea
[e-mail: nolight@korea.ac.kr]

2School of Electronics and Computer Engineering, Korea University
Anamdong 5-ga, Sung-buk gu, Seoul 137-710, Korea
[e-mail: {guru1013, dekarno, csjeong}@korea.ac.kr]

*Corresponding author: Chang-Sung Jeong

Received July 5, 2010; revised September 21, 2010; accepted September 30, 2010;
published December 23, 2010

Abstract

Well organized and easy usable Grid management system is very important for executing
various Grid applications and managing Grid computing environment. Moreover, information
system which can support Grid management system by providing various Grid environment
related information is also one of the most interesting issue in the Grid middleware system
area. Effective cooperation between Grid management system and information system can
make a novel Grid middleware system. Especially, service oriented architecture based Grid
management system is flexible and extensible for providing various type of Grid services.
Also, information system based on data mining process which comprises various different
kinds of domains such as users, resources and applications can make Grid management system
more precise and efficient. In this paper, we propose semantic Grid middleware system which
is a combination of Grid management system and semantic information system.

Keywords: Grid, middleware, semantic, data mining, resource allocation

1081 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware

1. Introduction

To make efficient use of a Grid environment, an easy-to-use and stable Grid management
system must be necessary for providing various Grid services such as resource allocation,
authentication, data transferring, scheduling and monitoring. Moreover, information system
which reflects real time information of Grid environment for searching most suitable services
is another necessity of Grid middleware system. Many Grid middleware systems have their
own service implementations and information broker to meet the minimum requirements of
Grid middleware system. Globus is one of the most well-known Grid middleware systems that
contain services such as authentication, resource allocation, and data management. Recently,
Globus provides a way to implement services as a form of web services so that user can easily
access to the Globus through the various system environment. However, Globus is not easy to
be managed because each of services is heavy and implemented separately. Moreover, due to
its lack of information service, Globus is hard to provide intellectual services considering
network and feature of Grid applications. To overcome these limitations, we already proposed
agent-based Grid management system which encapsulated various Grid services into web
services and semantic information system that provides high level service to Grid users by
analyzing and inferring Grid environment information. In this paper, we will introduce an
advanced semantic Grid middleware system for effective scheduling and monitoring services
based on multiple semantic information sources. This paper is organized as follows. Section 2
introduces our system architectures. In section 3, we explain evaluations and experiments of
semantic Grid middleware system with an example of labeling algorithm application. Finally,
we summarize our work and conclude this paper in section 4.

Fig. 1. Overall System Architecture

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1082

2. System Architecture
Our semantic Grid middleware system consists of three sub systems. Semantic Grid
Management System (SGMS) [1] not only takes charge of various Grid services such as job
executing, resource allocation, and data distribution, but also contains functions for resource
information extracting and monitoring service. Semantic Information System (SIS) [2] makes
ontology which contains information about Grid resources and application features by
interacting with SGMS, and provides semantic information for efficient Grid services. Grid
Portal System is web service based user interface for two semantic Grid middleware systems
to provide easy accessibility to Grid users. Users can easily access to the Grid services through
the Grid Portal System, and also can monitor resources and application status in the Grid
environment. We will explain features and components of each system in more detail in the
next sub sections.

2.1 Semantic Grid Management System (SGMS)
SGMS is a centralized Grid service middleware system for Grid services by using agent-based
resource management technology. An agent-based approach can be employed for integrating
and coordinating distributed resources in computational Grid environments. Also, this
approach can improve scalability, heterogeneity, and interoperability. SGMS consists of four
sub components: Grid Service Manager, Process Manager, Agent Manager, and Resource
Agent. Grid Service Manager is a kernel of our Grid service management system which is
bound with web service interface. Process Manager controls life cycle of Grid tasks, and takes
charge of scheduling and monitoring services. Agent manager controls a virtual resource pool
which is made up of combination of Agent Controllers. Agent Controller is a proxy
component of Resource Agent. Resource Agent is an actual component which executes
services such as data management, remote execution, and resource information extraction, and
located in each of Grid resources. We will describe each of components more in detail.

Fig. 2. SGMS components and their relations

1083 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware
2.1.1 Grid Service Manager (GSM)
Grid Service Manager is a kernel of SGMS. It has communication modules that interact with
web services and databases. And it has Agent Manager and Process Manager for controlling
Grid resource and applications.

Grid Service Manager has two interface handlers: web service handler and database handler.
Web service handler parses and disposes requests of service from Grid portal or web service
client. Grid Service Manager disposes requests based on the type of service. If the request is a
Grid service from the Grid portal like job execution or data distribution, Grid Service Manager
passes the request to Agent Manager as a translated format of command. When the request is
for resource information from web service client or SIS, Grid Service Manager collects
resource information from Agent Manager and database, and returns it to the service requester.
This web service handler can provide flexibility and extensibility of service implementations,
and also give a uniform interface to Grid Portal System or web service client.

Database handler takes charge of storing and managing information of users, tasks, and
resources which used in Grid management services. When web service handler receives
request of service, Grid Service Manager queries information related to the request from
database through the database handler to build a service command to send it to Agent
Controllers for executing Grid services. Database handler maintains connection of database
between database server and Grid Service Manager, and regulates access level to the database.

2.1.2 Resource Agent (RA)
RA is a agent component which can be installed in Grid resources. RA has encapsulated Grid
services such as data distribution, job execution, and information monitoring. Any Grid
resource owner who wants to join Grid resource pool can obtain the RA which is opened to the
public. When resource providers get a RA, they can install it to their own Grid resource with a
particular configuration. This configuration contains information of user, security, resource
properties, restrictions of utility, and so forth. This kind of Grid resource information is passed
to Agent Controller which is located in Agent Manager at Grid management server, and the
Agent Controller stores passed information to its local memory. Grid management system can
control each of Grid resource based on information in Agent Controller for providing various
Grid service individually.

Most of Grid management system provides various Grid services such as security, data
management, remote execution and monitoring. These services are usually separated in
different demons. In the case of Globus toolkit [3], for example, each Grid services main body
such as GSI [4] for security, GridFTP for data management, GRAM [5] for execution
management, and MDS for information service are packed in different components. The
separation of service component can provide a flexibility of service selection, but it can make
sharing of Grid resource more complex. To give easy use environment to resource provider,
our Resource Agent offers a uniform interface for lots of Grid services within single
communication channel. Resource Agent capsules different Grid services into one single
component to give a simple installation environment and maintain cost.

Resource Agent is located in each Grid resources, active as a demon, connected with Agent
Controller. Resource Agent controls operations Grid services, and executes Grid services such
as data transferring, job executing, user authenticating, and resource monitoring. Also,
Resource Agent collects information of Grid resource such as CPU clock, storage, memory,
library which its resource have, and system properties. This information is transmitted to
Agent Controller for providing resource information service. Grid management system

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1084

provides dynamic resource information service as a form of web service by using the
information in Agent Controller.

2.1.3 Agent Manager and Agent Controller
Agent Manager is a master controller of Resource Agent that makes Grid resources as one
single virtual Grid resource pool. It manages Agent Controllers and their life cycles. It waits
for request of connections from Grid resource, and when it receives connection request, Agent
Manager generates a new Agent Controller which is bound to the Grid resource. And then,
Agent Manager adds the Agent Controller to agent list for expanding current Grid resource
group. After then, each Grid resources can communicate with other Grid resources through
Agent Manager.

Agent Controller is a proxy of Resource Agent which is managed by Agent Manager, and it
has a one-to-one relation with Resource Agent. Grid Service Manager controls Grid resources
by sending commands to Agent Manager, and this Agent Manager passes it to the
correspondinig Agent Controllers to execute Grid services. Agent Controllers send service
commands or transfer data to Resource Agent when it receives a Grid service command from
Agent Manager.

2.1.4 Process Manager and Process Controller
Process Manager is a master component of Grid applications, which is created by Grid Service
Manager. Process Manager receives application data from Grid portal, and generates Process
Controllers which take charge of each of life cycles of Grid application. Each Process
Controllers is placed under the Process Manager control before application execution being
completed. Process Manager not only takes charge of life cycles of Process Controllers, but
also provides scheduling and monitoring services.

Process Controllers are generated by Process Manager based on application data passed
through Grid portal. Process Controller has a one-to-one relationship with Grid application,
and also contains information about Grid application such as process procedure and allocated
resources. Process Controller collects Agent Controllers based on Grid application
information from the Agent Manager, and it orders Agent Controllers to execute Grid
applications.

Our proposed Grid management system architecture has a flexibility and extensibility due
to the separation of Process Manager and Agent Manager. In other words, Grid Service
Manager controls Grid resources and applications independently, but it can enable lots of
combinations of Grid resources and application easily. Moreover, to select Grid resources for
executing Grid application, one Grid application can flexibly access to the Agent Controllers
through the Agent Manager without resource dependency. Fig. 2 shows that one Process
Controller which takes charge of execution of Grid application can make virtual Grid resource
pool by comprising several Agent Controllers in Agent Manager. From a point of view of Grid
resource, one Grid resource does not depend on specific Grid application, and can be shared by
one or more Process Controllers simultaneously. So this architecture can make high usability,
sharability, and extensibility as well. Especially, to make high usability, Process Manager
must have adjustment function for the competitions between Process Controllers. Scheduling
and monitoring services based on semantic information can solve this competition condition
for effective usability of Grid environment. Section 3 shows the detailed description of
scheduling and monitoring services.

1085 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware
2.2 Semantic Information System (SIS)
SIS provides high level information to Grid management system or Grid users for effective
utilizing Grid environment based on multi-dimensional information sources. Different kinds
of information sources provide more rich Grid environment information to the SIS. Fig. 3
shows components and their relation of SIS.

Fig. 3. SIS components and their relations

2.2.1 SIS Components
Ontology Repository is a storage which contains ontology files described with semantic web
language such as OWL [6] or RDF [7]. These files consists of ontology schemas and instances
about Grid environment information. Ontology Manager takes charge of maintaining ontology
files in the Ontology Repository, and communicates with Data Mining System and inference
engine. Inference Engine is a reasoning component based on ontology data. Ontology files
have just basic information about Grid environment, and inference engine can generate
additional information by extending information relations. Semantic Information Manager
deploys semantic information services as a form of web service. Semantic Information
Manager receives a request of information services and handles the request by using inference
engine.

2.2.2 Data Mining System (DMS)
DMS is a sub system of SIS. The main role of DMS is a reflection of real time Grid
environment information by using information modeling and analyzing Grid resources and
applications. DMS collects Grid environment information from SGMS and database, and
reports useful information or updated data of Grid environment to Ontology Manager.
Ontology Manager updates ontology files in the Ontology Repository for providing more
accurate semantic information service. DMS can make SIS more strong and reliable by
reflecting real time Grid environment changes.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1086

2.3 Multiple Information Sources
Our middleware system has various information sources for making accurate information
services. Each of information sources has different kinds of information types. One is
Resource Agent that can collect static and dynamic information about Grid resources. Static
Grid resource information consists of such hardly changeable data as CPU clock, storage
space, memory size, etc. Dynamic resource information is frequently changed data such as
CPU and memory utilization. Another information source is Process Controllers. Process
Controllers have Grid application information. Status of application, time stamps of execution,
and other application related information is stored in the Process Controllers. Process
Controller can provide application information with its related resource information by
communicating with Agent Controllers for determining another application’s resource
matching service. And the other information source is DMS. DMS is a higher level of
information source by executing three steps of information processing: collecting, modeling,
and reporting. DMS collects information from the Resource Agents or database. And it makes
models of its related information for analyzing resources and application. When modeling
process has done, it reports its result to the Ontology Manager which updates ontology files in
the Ontology Repository.

Our system has various information sources for semantic information services. Each of
information sources has different kind of information, which enables us to improve accuracy
of information service.

3. Evaluation

3.1 Evaluation Overview
Our semantic Grid middleware has a strong point for an application executing environment.
Grid application users can easily execute their applications by describing job descriptions and
service level agreements of resources through Grid Portal System. And also, our Semantic
Grid Management System provides various Grid services as a form of web service and
encapsulates these services into a single Grid service component. Thus, user can easily access
to the Grid middleware system and take their application execution result through the Grid
Portal System. But, most of Grid middleware systems are focusing their system purpose on
executing environment, since it is not easy to improve application performance by using Grid
middleware system services. Similarly, the main object of our middleware system is providing
easy usable Grid services and high level information services. So our Grid management
system can provide easy usable application execution environment, but it does not consider the
performance improvement of Grid application. From a point of view of Semantic Information
System, the main object of this system is providing additional information about applications,
resources, and users for making better performance of Grid application by using semantic
information. These semantic information processing has many analyzing processes for various
domains such as resources, applications, and users. One example of semantic information
processing is a resource analysis. The resource analysis collects information of resources
which include both dynamic and static values. Semantic Information System can identify
resource specification based on analyzed resource information. So, Semantic Information
System can classify Grid resources according to application dependency. Another example is a
task analysis. The task analyzing is classifying application types in related with what kinds of
hardware elements are strongly dependent for the performance of Grid applications based on
executing performance on various difference Grid resources. So, in this paper, we will try to

1087 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware
show the process of semantic information processing about task feature analysis by using
resource matching and performance comparison. Especially, we will consider calculation
power dependent application which can be solved using either CPU or GPU to show which
hardware elements are more significant for the performance of our sample application.

3.2 Fast Parallel Connected-Component Labeling Algorithm
Connected-Component labeling algorithm is calculation for giving unique labels to the all of
connected pixels which form a one single object. This labeling algorithm is one of the basic
skills that are adopted in pattern recognition, computer vision and simulation area. Especially,
2-dimensional connected-component labeling needs fast processing speed for the real time
image processing. Many already known algorithms are improved in various researches, but
most of previous algorithms use a serial approach based on CPU. To improve
connected-component labeling performance, we developed 2-dimensional parallel labeling
algorithm suitable to GPGPU application by using NVIDIA CUDA technique. The CUDA
(Computer Unified Device Architecture) [8] which is released by NVIDIA can support latest
SIMD structured graphic devices with common calculation process through the C language
type syntaxes and libraries. SIMD structured GPGPU can access and handle multiple pixels
simultaneously by using identical index of threads through the hardware. For executing
2-dimensional labeling process, there must be an additional array space with the same size of
original input image for storing label equivalence and output image. Fig. 4 shows GPGPU
based 2-dimensional labeling algorithm diagram.

Fig. 4. GPGPU based 2-dimension labeling algorithm diagram

In the initial phase, set initial label values to all index label array. If pixel is located in

background area, very large integer value is assigned to this pixel. If pixel is located in the
object area, that pixel is set with thread index value. In the scanning phase, execute scanning
process to the neighbor pixels by using some masked filters based on initialized labels in the
label array. We ignore background pixel in neighbor pixels, and find the minimum value in the
masked area including origin pixel, store it in the equivalence array. In the analysis phase,
based on label information in the equivalence array, execute a search process until reaching
the point where the two values between pixel index and label value are matched. When the
search is over, each thread stores start point label values into the pixels which the threads took
process. In the link phase, to link one or over two sub-regions which is made through analysis
process, execute scanning process to all neighbor pixels of each pixel in the equivalence array.
If the founded sub-region label value is smaller than self pixel, thread set the previous start
value of sub-region into a newly founded sub-region start value. In the label phase, execute a
final labeling by passing start value of label of each pixel in the equivalence array to the label
array. When the label phase is over, to confirm the labeling process, our algorithm tries to scan
once again for all neighbor pixels in the label array. If the labeling still remains the same, go

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1088

back to the analysis step for processing the remaining area. Fig. 5 shows the example of this
labeling algorithm process.

Fig. 5. GPGPU based labeling algorithm example

3.3 Resource Analysis
Due to the heterogeneity of Grid computing environment, each of resources in the resource
pool has difference hardware features. Basically, our Resource Agent in Semantic Grid
Management System has a function for extracting resource information such related
information as CPU, memory, and storage. And also, Resource Agent can collect dynamic
resource information which has easily changable tendency in real time execution process. But,
it is not easy to extract all of the resource features through one agent component because each
hardwares has various sub categories. To solve this problem, we use one of the most famous
resource information extracting program whose name is Everest. The Everest software
released by Lavalys Consulting Group is a powerful hardware analysis program that contains
lots of useful services such as benchmarking between difference vendors, performance
simulation based on CPU power dependent algorithm, and easy profiling and reporting
services. Especially, Everest can be applied at all kinds of hardwares in the current market, and
support frequent update for following a fast changable trend in the hardware market. We can
collect wide range of hardware feature for each of sample resources, but we had to limit the
hardware elements for effective analysis. The elements of hardware that needs to be
considered in case of executing application is CPU, GPU, memory, and storage. In case of
memory, there are four sub elements of hardware property that is related with speed
performance of memory. We will analyze the speed of read, write, copy, and delay of memory
in each resource. CPU has two types of performance features. One is common execution speed,
and another is floating point execution speed. For testing common execution speed, Everest
applies some well known calculation dependent algorithm such as Queen or PhotoWorxx. To

1089 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware
check the performance of floating point execution, Everest simulates Julia and Mandel
algorithm. In case of GPU, there are two key elements of hardware performance. One is
GPGPU core number, and another is GPGPU clock. The number of GPGPU cores tell the
maximum number of thread which that kind of GPU can make at one time, so usually the
higher number of GPGPU cores shows the better performance of the GPGPU. The GPGPU
clock indicates the speed of processor in the GPU hardwares, but this values is tightly related
with the performance of GPGPU, so it may be considered as some reference features. In case
of storage performance, most important performance factor of HDD is speed of read and write
data. Unfortunately, Everest does not support enough test mode for measuring HDD
performance, we use another software for testing HDD performance of each resource. We
used CrystalDiskInfo for evaluating HDD performance for the case of sequence read and write,
large block(512K) read and write, and small block(4K) read and write. The CrystalDiskInfo
provides easy interface and simulation method for measuring various HDD performance, so
we can get a performance result through the CrystalDiskInfo software. The details of hardware
and software specifications are shown in Table 1, and the result of resource analysis of our
four sample resources is shown in Table 2.

Table 1. Sample resource specifications
 M1 M2 M3 M4

OS Windows Server
2003 Enterprise

Windows 7
Enterprise 64bit

Windows 7
Enterprise 32bit

Windows XP
Professional

CPU_type Intel Core 2 Duo
E6550

AMD Athlon 64
3500+

Intel Core i5 750 Intel Core 2 Quad
Q6600

CPU_core 2 1 4 4
CPU_clock 2333 (MHz) 2200 (MHz) 2800 (MHz) 2400 (MHz)
Mem_type DDR2 DDR DDR3 DDR2
Mem_size 2048 (Mb) 512 (Mb) 4096 (Mb) 4096 (Mb)

Mem_clock 333 (MHz) 200 (MHz) 609 (MHz) 400 (MHz)
GPU_type nVIDIA GeForce

9800 GT
nVIDIA GeForce

8800 GT
nVIDIA GeForce

9600 GT
nVIDIA GeForce

GTX 260
GPU_uProc

/core
14/112 14/112 8/64 27/216

GPU_clock 600 (MHz) 602 (MHz) 650 (MHz) 602 (MHz)
GPU_Mem 512 (Mb) 512 (Mb) 512 (Mb) 896 (Mb)
HDD_space 99998 (Mb) 114400 (Mb) 200000 (Mb) 117200 (Mb)
MB_chipset Intel G33 nVIDIA nForce4 Intel P55 Intel P35

CUDA 2.2 2.2 2.3 2.2

Producing a resource analysis result is not a difficult process. The values in Table 2 are
actually absolute values that does not contain relative information between each resource. To
compare the hardware efficiency between each of sample resources, we have to normalize all
the values in Table 2. Normalization can reduce the range of each values, thus we can execute
easy performance comparison for the sample resources. We used a maximum value pivot
normalization for calculating each value of resource performance. This method calculates a
proportion of each value in the same region by measuring relative values to maximum value.
This method is easy and fast, and also can be applied to various hardware feature domains at
the same time. Table 3 shows the result of normalization from the analysis result for our
sample resources. This table shows that M3 is the most powerful performance in lots of
hardware domains except GPGPU cores. M2 has poor performance in both GPU and GPGPU

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1090

domains. M1 has average performance throughout the hardware domains. M4 has high
average performance in CPU domain. Especially, M4 has most powerful performance in
GPGPU domain.

Table 2. Resource analysis result

 M1 M2 M3 M4
MEM read(MBps) 6393 5878 12540 6473
MEM write(MBps) 6054 4059 9643 4838
MEM copy(MBps) 5827 4586 13388 5377

MEM delay(ns) 78.7 55.9 56.1 74.8
CPU Queen 9978 3850 19863 17190

CPU PhotoWorxx 11389 3758 28761 16626
CPU Zlib(KBps) 31058 12980 64940 63430

CPU AES 8713 2866 21485 17895
FPU Julia 4380 933 10988 8856

FPU Mandel 2189 533 5777 4383
FPU SinJulia 1092 491 3441 2244
GPGPU core 112 112 64 216

GPGPU clock(MHz) 1512 1500 1625 1296
HDD seq read 73.04 46.86 91.71 70.42
HDD seq write 74.94 46.29 90.63 65.48
HDD 512k read 37.81 24.89 42.16 30.55
HDD 512k write 54.59 28.61 77.58 32.24

HDD 4k read 0.565 0.411 0.562 0.403
HDD 4k write 1.767 1.433 1.827 1.211

Table 3. Resource analysis normalization result

 M1 M2 M3 M4
MEM read(MBps) 0.509808612 0.468740032 1 0.516188198
MEM write(MBps) 0.627812921 0.420927097 1 0.501711086
MEM copy(MBps) 0.435240514 0.342545563 1 0.401628324

MEM delay(ns) 1 0.710292249 0.712833545 0.950444727
CPU Queen 0.502341036 0.19382772 1 0.865428183

CPU PhotoWorxx 0.395987622 0.130663051 1 0.578074476
CPU Zlib(KBps) 0.478256852 0.199876809 1 0.976747767

CPU AES 0.405538748 0.133395392 1 0.832906679
FPU Julia 0.398616673 0.084910812 1 0.805970149

FPU Mandel 0.378916393 0.09226242 1 0.758698286
FPU SinJulia 0.317349608 0.142691078 1 0.652136007
GPGPU core 0.518518519 0.518518519 0.296296296 1

GPGPU clock(MHz) 0.930461538 0.923076923 1 0.797538462
HDD seq read 0.796423509 0.510958456 1 0.767855196
HDD seq write 0.826878517 0.510758027 1 0.722498069
HDD 512k read 0.896821632 0.590370019 1 0.724620493
HDD 512k write 0.703660737 0.368780614 1 0.415571023

HDD 4k read 1 0.727433628 0.994690265 0.713274336
HDD 4k write 0.967159278 0.784345922 1 0.662835249

1091 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware

Fig.6. Resource feature normalization result

Table 3 shows relative performance between each of sample resource. However, graphical
analysis is much more efficient for task analysis and performance evaluation. With a graphical
analysis result, we can easily verify features of each of resources, and it can be useful for
calculating task features. Fig. 6 shows graphical analysis result of our four sample resources.
The most important hardware domain is CPU and GPGPU area. For example, in case of CPU,
M3 has most powerful performance though all CPU domain, and M2 has the poorest
performance. But in case of GPU, M2 has better analysis result than M3. Based on this
graphical resource analysis result, we can utilize the resource analysis for calculating task
features by comparison of performance margin.

Fig.7. Test images for labeling algorithm

Airport(left) with 1024x1024 and Spiral(right) with 4084x4084

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1092

3.4 Performance Analysis
As already explained in section 3.2, we developed a parallel connected-component labeling
application. This application shows a better performance in GPGPU environment, but it can be
also executed in CPU environment. The purpose of executing this application compares a
performance difference between sample resources. If we can get performance variation in
resource for each application, we can extract application features. For the preprocessing of
task analysis, we executed our labeling algorithm application on each of the sample resources
with two sample images. Fig. 7 shows our two sample images.

Table 4 and table 5 shows the result of executing our connected-component labeling
algorithm application. Table 4 shows the execution time for each of input images by using
both CPU and GPGPU. Due to the difference of test image input size, airport image execution
result does not show clear result in case of CPU and CPU except a M4 GPU case. The
execution result in spiral4096 shows a distinct difference in both CPU and GPU cases.
Especially the result of M4 with GPU shows significant reduction of execution time due to the
its outstanding hardware performance. Table 5 indicates the performance factor of CPU and
GPU for the two input images. These values shows relative hardware efficiency in case of
CPU and GPU.

Table 4. Application execution result

 M1 M2 M3 M4 MAX
spiral4096
CPU(ms) 693 979 595 687 979
GPU(ms) 553 625 478 124 625

airport1024
CPU(ms) 40 55 40 39 55
GPU(ms) 27 25 20 8 27

Table 5. Application execution performance

 M1 M2 M3 M4 MAX
spiral4096

CPU 0.0014430 0.0010214 0.0016807 0.0014556 0.0016806
GPU 0.0018083 0.0016012 0.0020921 0.0080645 0.0080645

airport1024
CPU 0.0250000 0.0181818 0.0250000 0.0256410 0.0256410
GPU 0.0370374 0.0400000 0.0500000 0.1250000 0.1250000

3.5 Task Feature Analysis
The main purpose of our experiment is analyzing specific tasks by using resource analysis and
performance variation. Most of Grid application usually has a repeatable execution feature
with different parameters. For example, gene pattern searching application has a simple
process algorithm with different gene input data area. Also, in case of volume rendering,
without the change of algorithm and input data, user usually want to get a different output
images based on the point of view value. So, it is important issue for allocating these kinds of
repeatable application for a most suitable resources.

To find the most recommendable resource for a Grid application, analyzing input task
feature is very important issue in this problem. In this paper, we propose a reverse task feature
analyzing method by using resource analysis and performance variation. In the previous
section, we already explained the resource analysis and performance analysis process. In the

1093 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware
section 3.3, we already got a resource analysis data from Resource Agent. As we explained in
section 3.4, we also had our labeling application performance result. The main idea of our task
feature analyzing method is performance variation comparison between two different sample
resources. We know all the features of test bed resources. And if there is some variation in both
the resources and result performance, we can inference what kind of hardware elements are
strongly or loosely effected to the application performance by comparing with all case of
combination between resources. Table 6 shows the resource variation for each of combination
of our four sample resources. This table shows what kind of hardware elements are changed
between two resources. Table 7 shows the result of performance variation between each of
combination of our sample resources. Based on the data in Table 6 and Table 7, we can
extract strongly coupled hardware elements with our labeling application.

Table 6. Resource variations between each of sample resources
 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4

MEM read(MBps) 0.04107 -0.4902 -0.0064 -0.5313 -0.0474 0.48381
MEM write(MBps) 0.20689 -0.3722 0.1261 -0.5791 -0.0808 0.49829
MEM copy(MBps) 0.09269 -0.5648 0.03361 -0.6575 -0.0591 0.59837

MEM delay(ns) 0.28971 0.28717 0.04956 -0.0025 -0.2402 -0.2376
CPU Queen 0.30851 -0.4977 -0.3631 -0.8062 -0.6716 0.13457

CPU PhotoWorxx 0.26532 -0.604 -0.1821 -0.8693 -0.4474 0.42193
CPU Zlib(KBps) 0.27838 -0.5217 -0.4985 -0.8001 -0.7769 0.02325

CPU AES 0.27214 -0.5945 -0.4274 -0.8666 -0.6995 0.16709
FPU Julia 0.31371 -0.6014 -0.4074 -0.9151 -0.7211 0.19403

FPU Mandel 0.28665 -0.6211 -0.3798 -0.9077 -0.6664 0.2413
FPU SinJulia 0.17466 -0.6827 -0.3348 -0.8573 -0.5094 0.34786
GPGPU core 0 0.22222 -0.4815 0.22222 -0.4815 -0.7037

GPGPU clock(MHz) 0.00738 -0.0695 0.13292 -0.0769 0.12554 0.20246
HDD seq read 0.28547 -0.2036 0.02857 -0.489 -0.2569 0.23214
HDD seq write 0.31612 -0.1731 0.10438 -0.4892 -0.2117 0.2775
HDD 512k read 0.30645 -0.1032 0.1722 -0.4096 -0.1343 0.27538
HDD 512k write 0.33488 -0.2963 0.28809 -0.6312 -0.0468 0.58443

HDD 4k read 0.27257 0.00531 0.28673 -0.2673 0.01416 0.28142
HDD 4k write 0.18281 -0.0328 0.30432 -0.2157 0.12151 0.33716

Table 7. Performance variations between each of sample resources

spiral4096 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4
CPU(ms) 0.00042 -0.0002 -0.00000 -0.00070 -0.00040 0.00023
GPU(ms) 0.00021 -0.0003 -0.00630 -0.00050 -0.00650 -0.00600

airport1024 M1-M2 M1-M3 M1-M4 M2-M3 M2-M4 M3-M4
CPU(ms) 0.00682 0.00000 -0.00060 -0.00680 -0.00750 -0.00060
GPU(ms) -0.00300 -0.01300 -0.08800 -0.01000 -0.08500 -0.07500

After collecting the resource and performance variations between each of sample resources,

we can find a weight value for each of hardware elements. These hardware weight values
indicate effects which are contributions of each elements to the application performance result.
By executing multiplication operation to the variation of each of resources and performance,
we can find a hardware weight value for each element. Based on these hardware weight

 Table 8. Hardware element weight values on CPU with spiral image

TASK1(CPU) TR1 TR2 TR3 TR4 TR5 TR6 AVR
MEM read(MBps) 1.73125E-05 0.000116504 8.03996E-08 0.000350218 2.05998E-05 0.000108891 10.22676151

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1094

MEM write(MBps) 8.72129E-05 8.8458E-05 -1.58922E-06 0.000381737 3.50727E-05 0.000112149 11.71734751
MEM copy(MBps) 3.90756E-05 0.000134227 -4.23602E-07 0.000433408 2.5651E-05 0.000134674 12.77687714

MEM delay(ns) 0.000122127 -6.82511E-05 -6.24527E-07 1.67528E-06 0.000104263 -5.34787E-05 1.761843282
CPU Queen 0.000130054 0.000118279 4.57585E-06 0.000531446 0.000291578 3.02878E-05 18.43701529

CPU PhotoWorxx 0.000111848 0.000143556 2.29477E-06 0.000573086 0.000194245 9.4962E-05 18.66653181
CPU Zlib(KBps) 0.000117351 0.000124003 6.2823E-06 0.000527459 0.000337281 5.23334E-06 18.62683558

CPU AES 0.000114722 0.000141286 5.38596E-06 0.000571285 0.000303695 3.76074E-05 19.56636268
FPU Julia 0.000132243 0.000142931 5.13373E-06 0.000603247 0.000313051 4.36699E-05 20.67125382

FPU Mandel 0.000120839 0.000147613 4.78625E-06 0.0005984 0.000289336 5.43093E-05 20.25473769
FPU SinJulia 7.36275E-05 0.000162246 4.21919E-06 0.000565157 0.000221177 7.82931E-05 18.41199941
GPGPU core 0 -5.28157E-05 6.06793E-06 -0.000146494 0.000209037 -0.000158381 -2.37643225

GPGPU clock(MHz) 3.11299E-06 1.65273E-05 -1.67518E-06 5.07094E-05 -5.4503E-05 4.55677E-05 0.995652005
HDD seq read 0.000120338 4.83842E-05 -3.60036E-07 0.000322387 0.000111533 5.22484E-05 10.9088357
HDD seq write 0.000133261 4.11459E-05 -1.31547E-06 0.000322519 9.19277E-05 6.24569E-05 10.83324837
HDD 512k read 0.000129185 2.45225E-05 -2.17019E-06 0.000270037 5.82853E-05 6.19792E-05 9.030646553
HDD 512k write 0.000141169 7.04312E-05 -3.63069E-06 0.000416114 2.03142E-05 0.000131536 12.93222899

HDD 4k read 0.000114901 -1.26197E-06 -3.6135E-06 0.000176181 -6.14731E-06 6.33378E-05 5.72328376
HDD 4k write 7.70651E-05 7.80528E-06 -3.83528E-06 0.000142164 -5.27543E-05 7.58851E-05 4.105496363

Table 9. Hardware element weight values on GPU with spiral image

TASK2(GPU) TR1 TR2 TR3 TR4 TR5 TR6 AVR
MEM read(MBps) 8.55534E-06 0.000139083 3.99E-05 0.00026141 0.000307 -0.00289 -35.5644
MEM write(MBps) 4.30981E-05 0.000105601 -0.00079 0.00028493 0.000522 -0.00298 -46.8178
MEM copy(MBps) 1.93101E-05 0.00016024 -0.00021 0.0003235 0.000382 -0.00357 -48.3174

MEM delay(ns) 6.03514E-05 -8.14783E-05 -0.00031 1.2504E-06 0.001552 0.001419 44.02817
CPU Queen 6.4269E-05 0.000141202 0.002272 0.00039668 0.004342 -0.0008 106.859

CPU PhotoWorxx 5.5272E-05 0.000171378 0.001139 0.00042776 0.002892 -0.00252 36.09902
CPU Zlib(KBps) 5.79916E-05 0.000148035 0.003119 0.0003937 0.005022 -0.00014 143.3601

CPU AES 5.66924E-05 0.000168668 0.002674 0.00042641 0.004522 -0.001 114.1586
FPU Julia 6.53507E-05 0.000170632 0.002548 0.00045027 0.004661 -0.00116 112.2867

FPU Mandel 5.97153E-05 0.000176221 0.002376 0.00044665 0.004308 -0.00144 98.75998
FPU SinJulia 3.63846E-05 0.00019369 0.002094 0.00042184 0.003293 -0.00208 66.03521
GPGPU core 0 -6.30515E-05 0.003012 -0.0001093 0.003113 0.004203 169.254

GPGPU clock(MHz) 1.53835E-06 1.97303E-05 -0.00083 3.785E-05 -0.00081 -0.00121 -46.5536
HDD seq read 5.94676E-05 5.77612E-05 -0.00018 0.00024063 0.001661 -0.00139 7.556148
HDD seq write 6.58537E-05 4.91201E-05 -0.00065 0.00024073 0.001369 -0.00166 -9.76489
HDD 512k read 6.38395E-05 2.9275E-05 -0.00108 0.00020156 0.000868 -0.00164 -25.9914
HDD 512k write 6.97616E-05 8.40809E-05 -0.0018 0.00031059 0.000302 -0.00349 -75.4319

HDD 4k read 5.67806E-05 -1.50654E-06 -0.00179 0.0001315 -9.2E-05 -0.00168 -56.3219
HDD 4k write 3.80834E-05 9.31796E-06 -0.0019 0.00010611 -0.00079 -0.00201 -75.8268

elements in each of combination of sample resource, we can find a influence proportion at
every case of resource changes. But, it is not a common impact ratio for all kind of resource
changes. So, for calculating common weight values of each hardware element in all cases, we
have to apply some compensation method for reducing a possibility of exceptional case. Most
general method is applying some kinds of average calculation metric such as median, mean,
and average numerical formula. In this paper, we used average calculation formula for
determining common weight values of each hardwares elements, due to the its accuracy and
conveniency. Table 8 shows the result of hardware elements weight value on CPU with a
spiral image. Table 9 shows the result of hardware elements weight value on GPU with a
spiral image.

The most important attribute is the average value of each hardware element. This value
shows how strongly the hardware factors give an influence to the application performance in
common case. As already mentioned in this section, finding a task feature is the main purpose
of our experiment for the efficiency of executing applications. By analyzing resource features
and collecting performance variations between the each compbination of our sample resources,

1095 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware
we can calculate an impact factor of each hardware element for the performance of application.
As a result of our experiment for the connect-component labeling application, finally we
produce our application feature analysis result shown in Fig. 8 and Fig. 9.

Fig.8. Feature analysis result of labeling application on CPU

Fig.9. Feature analysis result of labeling application on GPU

3.6 Matching Score and Resource Allocation
Throughout the section 3, we introduced fast connected-component labeling application.
Moreover, we already showed information processing steps which include resource analysis,
application performance analysis and taks feature analysis. The main purpose of our semantic
information processing is finding a relation between resources and applications. Semantic
information system can find a suitability of secured resouces for executing Grid applications,
so it can provide a high system usability by making a resource allocation order. To indicate a
suitability of resources for Grid application, which result from semantic information
processing, we introduce a matching score. Matching scores are numercal values of computing
resources which indicate a suitability for Grid application. Matching score is not a fixed value
of computing resource but a relative value from the secured Grid resources. It can be different
at any instance of semantic information processing based on Grid applications or applied
algorithms.

In section 3.3 and 3.5, we already performed resource analysis and task feature analysis
processes. We can get an application executing efficiency values of each resource by using
each of hardware element weight values of Grid applications and resources based on resource
analysis normalization result and feature analysis result. Semantic information system can
apply many different kinds of algorithms for calculating matching scores, but in this paper, we
appied multiplication operation to each of hardware elements of Grid resources and
application feature, and we used an average filter to reduce the dimension of feature elements.
Table 10 shows matching scores of each resouce for connected-component labeling
appplication. Each value means an efficiency of computing resource for executing our
connected-component labeling application. Resources with higher value are more efficient

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 4, NO. 6, Deceber 2010 1096

than resources of lower values. We can see that M3 has highest value in case of CPU execution
while M4 is the most efficient for GPU based execution. As a result, we can get the best
performance by allocating resources in order of M3, M4, M1, and M2 in case of CPU
execution. Allocating resources in order of M4, M3, M1 and M2 can make an optimal
performance in case of GPU based application execution. As we can see in Table 10, semantic
information system can offer resource allocation order for optimal application execution based
on various information sources such as computing resource specifications, application
algorithms and features.

Table 10. Matching scores of sample resources for the connected-component labeling application in

case of CPU and GPU based execution

 M1 M2 M3 M4
CPU execution 119.380 62.228 224.406 156.578
GPU execution 97.786 24.220 346.357 527.800

4. Conclusion
In this paper, we have proposed semantic Grid middleware system for various Grid services
based on semantic information process. Our system consists of semantic Grid management
system and semantic information system. Each of our Grid middleware system has flexible
and extensible components for various Grid services such as scheduling, monitoring and
application executions. With the connected-component labeling application, we have shown
the detailed semantic information process for resource allocation service by using resouece
analysis and application feature analysis. Taking advantage of our semantic Grid middleware
system based on data mining service embedded semantic information system and flexible Grid
management system, application users can easily access to the various Grid services with an
optimal application performance expectation.

References
[1] Hyung-Lae Kim, Tae-Nyon Kim and Chang-Sung Jeong, “Grid resource management system and

semantic information system,” in Proc. of IEEE 22nd International Conf. on Advanced Information
and Networking Applications Workshops, pp.1666-1671, 2008. Article (CrossRef Link)

[2] Tae-Nyon Kim, Hyung-Lae Kim, Ki-Ho Yi and Chang-Sung Jeong, “WebSIS: semantic
information system based on web service and ontology for Grid computing environment,” in Proc.
of IEEE 7th International Conf. on Computer and Information Technology, pp. 247-252, 2007.
Article (CrossRef Link)

[3] J. Frey, S. Graham and C. Kesselman “Grid Service Specification,” Open Grid Service
Infrastructure WG, Global Grid Forum, Draft 2, Jul. 2002.

[4] G.T. Ian Foster, Carl Kesselman and S.Tuecke. “A Community authorization service for group
collaboration,” in Proc. of Fifth ACM Conf. on Computers and Communications Security, Nov.
1998. Article (CrossRef Link)

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W.Smith, and S. Tuecke. “A resource
management architecture for metacomputing system,” Lecture Notes in Computer Science, no. 1459, pp.
62-82, 1998. Article (CrossRef Link)
[5] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider,

and L.A. Stein. OWL web ontology language reference. W3C, Feb. 2004.
[6] RDF, Resource Description Framework, http://www.w3g.org/RDF
[7] CUDA (Computer Unified Device Architecture), http://nvidia.com/object/cuda_what_is.html

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4483160�
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4385089�
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1011293�
http://dx.doi.org/doi:10.1007/BFb0053981�

1097 Kim et al.: Grid Management System and Information System for Semantic Grid Middleware

Hyung-Lae Kim received a B.S. degree in Electrical Engineering from Korea University, Seoul,
South Korea, in 2004. He has experiences in many industrial works such as distributed rendering
service, implementation of online education system, and customer management service about financial
business. He is currently a Ph.D. candidate in the School of Visual Information Processing from Korea
University, Seoul, South Korea. His research interests include Grid computing environment and
middleware software.

Byong-John Han received a B.S degree in Electrical Engineering from Korea University, Seoul,
South Korea, in 2007. He has involved in some projects such as Intellectual Unmanned Vehicle and
Semantic Information System in Grid middleware system. He is in the doctoral course in Electrical
Engineering from Korea University, Seoul, South Korea. His current research is Intellectual
management in Grid middleware system.

In-Yong Jeong received a B.S. degree in Electrical Engineering from Korea University, Seoul,
South Korea, in 2008. He is currently working toward the Ph.D. degree in Electrical, Electronic,
Computer Engineering at the Korea University. His research interests include distributed/parallel
computing and GPGPU computing

Chang-Sung Jeong is a professor at the Department of Electrical Engineering at Korea University.
He received his M.S.(1985) and Ph.D(1987) from Northwestern University, and B.S.(1981) from Seoul
National University. Before joining Korea University, he was a professor at POSTECH during
1982-1992. He was on editorial board for Journal of Parallel Algorithms and Application in 1992-2002.
Also, he has been working as a chairman of Collaborative Supercomputing Group in GFK(Global
Forum in Korea) since 2001, and a chairman of Computer Chapter at Seoul Section of IEEE region 10.
His research interests include distributed concurrent computing, grid computing, and collaborative
ubiquitous computing.

